Appendix 1

Motorola's 68K Processor Family

68000 Processor Software Model

The software model of a processor is used to give programmer some understanding of the operation, resources and structure of the processor. Motorla's 68K family differs from x86 in many aspects. The most important difference is in the way memory is accessed. 68000 is also an internal 32-bit machine which means the registers are 32-bits instead of 16-bits. 68000 has a Program Counter (PC) and it is used to address the memory space linearly (instead of adding the segment base adress with an offset to obtain the final address).

There are 19 registers in a 68000. 8 of them are general data registers (D0-D7). It has 7 general address registers. It has two stack pointers - one for user and one for the system (USP and SSP respectively). There is also a processor status word which is 16-bit and a program counter (32-bit). The 68000 is a general purpose register-based machine and every data register can be used as an accumulator or as a temp register. 68000 arranges the data bytes with least-significant byte first. This approach is called the little endian approach.

 +---------- +

 N |B0 |B1 | N+1

 +---------- +

 N+2 |B2 |B3 | N+3

 +---------- +

 | | |

 +---------- +

 | | |

 +---------- +

 +---------- +

 N | Word 0 | N+1

 +---------- +

 N+2 | Word 1 | N+3

 +---------- +

 | Word 2 |

 +---------- +

 | Word 3 |

 +---------- +

 +---------- +

 N |LongWord0 H| N+1

 +---------- +

 N+2 |LongWord0 L| N+3

 +---------- +

 |LongWord1 H|

 +---------- +

 |LongWord1 L|

 +---------- +

Addressing Modes

68000 is a CISC machine and has many addressing modes (14 to be exact). These addressing modes can be catagorized into 6 groups.

�
 Address generation Assembler Syntax

 --

 (1)Register Direct

 Data Register Direct Dn Dn

 Address register direct An An

 (2)Address Register Indirect

 Register Indirect (An) (An)

 Postincrement Reg Indirect (An); An<-An+N (An)+

 Predecrement Reg Indirect An<-An-N; (An) -(An)

 Reg. Indirect with offset (An)+ disp16 d(An)

 Indexed Reg. Indirect with offset (An)+ (Ri) + disp8 d(An)

 (3)Absolute Data Register

 Absolute Short (Next Word) xxxx

 Absolute Long (Next two Word) xxxxxxxx

 (4)Program Counter Relative

 Relative with Offset (PC)+disp16 d

 Relative with Index and Offset (PC)+ (Ri) + disp8 d(Ri)

 (5)Immediate Data

 Immediate DATA = Next Word(s) #xxxx

 Quick Immediate inherent data #xx

 (6)Immplied Addressing

 Implied Register SR, USP, SSP, PC

68000 Memory

68000 uses linear address to access the memory. Even though it has a 32-bit PC, only the lower 24 bits are used. With 24-bit address it can directly access up to 16 MB of memory.

68000 Stacks

68000 supports stacks and queues with the address register indirect postinrement and predecrement addressing modes. That is, with register indirect addressing mode all of the seven address registers can be used as stack pointers. Subroutine calls, trap and interrupts use the dedicated stack pointers - USP and SSP. Stacks from high to low memory are implemented with predecrement mode for PUSH and postincrement mode for POP. On the other hand, stacks from low to high use postinrement for PUSH and predecrement for POP. (Note: when address registers is used only 24 bits are valid.)

68020

68020 is a true 32-bit processor and it is object code compatible with 68000. It has many more registers. Besides the 8-data registers, 7-address registers, 1-PC and 1-SR, there are 3 SPs instead of 2. There are also 1 16-bit Vector-Based Register (VBR), 2 3-bit function code registers, 1 32-bit Cache address register (CAAR) and 1 32-bit Cache COntrol Register (CACR). There is an on-chip instruction cache of size 128 words (16-bit). The PC is a true 32-bit registers and can address up to 4GB of memory space. There are new instructions as well as new addressing modes. The new addressing modes are related to Memory Indirect and Memory INdirect with PC.

68030

68030 is a virtual memory processor based on 68020. That is 68030 has on-chip memory management unit which performs the paged data memory management. There are four new instructions for the MMU part of the processor. It also has an on-chip data cache of size 128 words besides the instruction cache.

68040

68040 is a better implemented 68030. It has larger on-chip data and instruction caches. It also has an on-chip floating point unit.

Example Assembly Programs for 8086 and 68000

The following two programs implements the summation of multiplying two set of numbers. This process is described as SUM Xi*Yi for i=1 to 100. In a pseudo language this calcualtion is described as:

 sum <- 0

 for i<- 1 to 100 do

 sum <- sum + X(i) * Y(i)

 endfor

In 68000 assembly code

; both Xs and Ys are16-bits and the result is 32-bit.

 MOVEQ.L #99, D0 ; DO is the index i

 LEA P, A0 ; Array X starts at P

 LEA Q, A1 ; Array Y starts at Q

 CLR.L D1 ;

LOOP: MOVE (A0)+, D2 ; get X(i)

 MULS (A1)+, D2 ; get Y(i) and dose the multiply X(i)*Y(i)

 ADD.L D2, D1 ; sum <- sum + X(i)*Y(i)

 DBF D0, LOOP ; test for zero; decrement and loop

In 8086 assembly code

; this is 8-bit by 8-bit multiply only. TO do 16-bit by 16-bit the code

; will be more complicated.

 MOV AX, 2000H ; Setup the data segment register

 MOV DS, AX ; load the data segment base

 MOV CX, 100 ; index i

 LEA BX, P ; load X address

 LEA SI, Q ; Load Y address

 MOV DX, 0000H ; sum <- 0

LOOPA: MOV AL, [BX] ; get X(i)

 IMUL [SI] ; X(i)*Y(i)

 ADD DX, AX ; sum <- sum + X(i)*Y(i)

 INC BX ; next X

 INC SI ; next Y

 LOOP LOOPA

