Languages and their Implementation
Tutorial 0

UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation
Tutorial 0. Introduction
It is important to realise that there are “connections” between “things” which, if fully understood, enable fundamental and general notions to be identified. This is not unusual, i.e. it is though understanding such connections that a science “evolves”. The purpose of this tutorial is simply to bring together various notations and concepts which you may have already encountered or have just encountered during this course, i.e.

· To set the practical solutions on a firm theoretical basis.

· To motivate study of theory and practice equally.

· To deepen understanding of the subject.

By means of an example “problem” it will be argued that the following notations are equivalent:

· Jackson Diagrams

· Non-recursive Syntax Graphs

· A restricted form of EBNF

· Finite State Automata

· Non-recursive Pascal programs

Because of this equivalence it is possible to use theoretical results from “language theory” to simplify the design of programs. Furthermore, more powerful (push-down) automata similarly form the theory which underlies both the more powerful (context-free) languages which can be described by EBNF and recursive syntax graphs and also the structure and behaviour of recursive programs written in an imperative language, e.g. Pascal.

1. An Example
The example is drawn from a simple initial programming exercise and involves the generation of a “mortgage repayments table” whose structure is given by the syntax graphs below.

The description above is structured into three separate graphs because the problem was refined top-down and this is ideal for use in deriving a Pascal program because each non-terminal corresponds to a Pascal procedure, and the resulting Pascal program maintains the top-down hierarchical structure making the program easier to understand.

For our purposes today, however, we will “destroy” the hierarchical structure by "flattening" the graphs into a single composite graph, because we are going to derive a finite state transition diagram systematically from the syntax graph, thus showing that syntax graphs and finite state machines are different ways of expressing the same information.

2. Derivation of Finite State Machine from Syntax Graph

A finite state transition diagram can be derived from a syntax graph which contains only terminal symbols in the following systematic manner.

· First, transform the symbols in the syntax graph into labels on arcs by choosing the start of the first arc as the finite state machine's start state, the end of the final arc as its final state, and each bifurcation as an intermediate state;

· Second, if there remain any two adjacent labels on an arc, they should be separated by an intermediate state.

Applying this transformation to the syntax graph for table, the following finite state transition diagram results.

The transition diagram for table describes a machine that can generate a table. It starts in state 1, where it has no choice but to generate a header, after which it is in state 2. In state 2 it can either generate a line and move to state 3, or it can spontaneously move to state 4. In state 3, similarly, it has a choice of either moving to state 4 or generating a line and remaining in state 3. In state 4 it has a choice of generating a nonstandard payment or a caption; in either case it moves to state 5.

Since state 5 has no outgoing arrows, there are no possible transitions and state 5 is known as a final state. Notice that there are two unlabelled arcs, one between states 2 and 4 and the other between states 3 and 4. These represent null (otherwise known as empty, spontaneous or lambda) transitions. A Language Theory course will cover techniques for deriving an equivalent "lambda-free" finite state machine. Depending on the use to which a finite state machine is to be put, we shall see later that lambda-freeness may be a desirable, or even necessary property. In this case, because both spontaneous transitions lead to state 4 and no other transitions do so, state 4 can be eliminated to result in the following "lambda-free" machine.

We now observe that all transitions from state 2 are the same as all those from state 3. The machine can therefore be further minimised to give the equivalent minimal machine shown below.

Such transformations of finite state machines and their underlying theory are covered in a “language theory” course precisely because they are of practical use in the design of software.

3. Finite State Machines and Regular Expressions

Regular expressions can be reasoned about as an abstract algebra whose theoretical properties can be developed and understood. They also are applicable in software design, where their theoretical properties may by taken for granted.

A regular expression is constructed in much the same way as the right hand side of an EBNF production rule, except that it does not contain any non-terminal symbols. A regular expression can be used to describe the strings (of symbols) accepted or generated by a finite state machine. Corresponding to any finite state machine, there is a regular expression which can be derived systematically from it and which defines a grammar for the language accepted by that machine. For example, if we consider the minimised machine in the previous section, the regular expression would be given by the EBNF rule:-

<mintable> ::= heading (line)* (nonstandardpayment | caption)
4. Regular Expressions and Jackson Diagrams
Regular expressions employ three operators: juxtaposition of operands to denote sequence concatenation, * to denote repetition and | to denote alternatives. Notice that these are precisely the three meanings attached to slightly different annotations in Jackson Diagrams. We observe immediately that the regular expression in the previous section means exactly the same as the Jackson Diagram below.

The box called body represents the starred bracketed sub-expression and that called footage represents the bracketed alternative sub-expression.

The equivalence of Jackson Diagrams and syntax graphs has already been pointed out in a previous lecture. The one overleaf is equivalent to the Jackson diagram above. Not surprisingly, if the systematic transformations, described earlier, are applied to it, the minimal finite state machine results.

At this point we seem to have come full circle in equivalencing notations for finite state machines, regular grammars and Jackson Diagrams. Typically, when considering “language theory” we converse primarily in the language of finite state machines, but the theorems and techniques covered are equally applicable and relevant to the other notations which are more widely used in programming courses. Similarly the uses to which EBNF, syntax graphs and Jackson Diagrams are put in a programming course can alternatively employ finite state machines as an equivalent tool.

5. Notations and Program Design

Jackson Diagrams may be regarded on the one hand as describing the input or output data structure of a program and on the other hand as describing the processing required to validate, manipulate or generate that data, i.e. data structure. The equivalence of the three structuring operators (sequence, selection and repetition) with the statement composition operators in Pascal leads to a systematic way of constructing programs from the structure of their input or output data. This is known as "Data Driven Design" and is the subject of Jackson's book "Principles of Program Design". Similar techniques have been proposed for deriving programs from finite state machines or regular expressions. One such reference is "The Systematic Design of File Processing Programs" by D. Coleman, published in Software Practice and Experience, volume 7, pages 371-381. A more powerful version of the technique has been used by compiler writers for many years and is known as Recursive Descent program design. This will be dealt with soon...

Chris Harrison, February 1999.

_1081930776.unknown

_1081930777.unknown

_1081930774.unknown

_1081930775.unknown

_1081930772.unknown

_1081930773.unknown

_1081930771.unknown

