UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Lexical Analysis and Syntax Analysis – Tutorial

1. Lexical Analysis PRECEDES syntax analysis (parsing)

Example:-

Initial Program

PROGRAM example;

 VAR i: integer;

BEGIN

 i:=0

END.

Same initial program with “white space” made visible (∆= space, <cr> = carriage return), i.e. the stored representation in a “text file”
PROGRAM∆example;<cr>

∆∆∆∆VAR∆i:∆integer;<cr>

BEGIN≤cr>

∆∆i:=0<cr>

END.
Converted into sequence of lexemes by lexical analyser

Lexeme

Kind, Value
PROGRAM

reserved word

∆

white space

example

identifier, “example”

;

terminator

<cr>

white space

∆

white space

∆

white space

∆

white space

∆

white space

VAR

Reserved word

∆

white space

i

identifier, “i”

:

separator

∆

white space

integer

standard identifier

;

teminator

<cr>

white space

BEGIN

reserved word

<cr>

white space

∆

white space

∆

white space

i

identifier, “i”

:=

assignment operator

0 integer constant, 0

<cr>

white space

END

reserved word

.

terminator

2. Syntax Analysis (Parsing)

Example:-

(Partial) Grammar is:-

Rule 1:
<program>
::=
PROGRAM <identifier> “;” <block> “.”

Rule 2

< identifier>
::=
<letter> (<letter>| <digit>)*

Rule 3

<block>
::=
<declaration list> “BEGIN” <statement_list> “END”

etc

String (program) to be parsed is:-

PROGRAM example;

 VAR i: integer;

BEGIN

 i:=0

END.

(Partial) Parse Tree is:-

<program>

|

program <identifier> “;” <block> “.”

 | |

 | <declaration_list>

 | |

 | VAR <identifier_list> “:” <type> “;” BEGIN <statement_list> END

 | | | |

 | <identifier> integer <statement>

 | | |

 | <letter> (etc)

 | |

 | i

 |

 |

 |

 |

 |

 <letter> <letter> <letter> <letter> <letter> <letter> <letter>

 | | | | | | |

e x a m p l e

Symbolically, we can represent the processing involved in deriving the above parse tree as:- (NOTE: assuming lexical level is “above” individual characters)

Step No.

State of Input

Derivation

Rule Applied
1

PROGRAM example….

<program>

2

PROGRAM

PROGRAM <identifier>…
Production 1

3

PROGRAM example

PROGRAM <identifier>…

4

PROGRAM example ; …
PROGRAM example ; …
Production 2

etc

etc

By BOTTOM-UP Parsing (or recognition):-

Reverse Derivation

Comment

PROGRAM example;…

PROGRAM example;…

PROGRAM example;VAR i: integer; BEGIN i:=0 END.
replace “example” By RHS of

 production 2

i.e. replace by <identifier>

PROGRAM <identifier>;VAR i: integer; BEGIN i:=0 END.

etc

etc

Problems:

a) Non-deterministic grammars

e.g.

Rule 1:
<program>
::=
PROGRAM <declaration list> “;” <statement list> END “.”

Rule 2:
<declaration list> ::= <declaration> “;” <declaration list>

Rule 3:
<declaration list> ::= <declaration>

etc

By left-factoring out the common part:-

Rule 1:
<program>
::=
PROGRAM <declaration list> “;” <statement list> END “.”

Rule 2:
<declaration list> ::= <declaration> <rest>

Rule 3:
<rest> ::= “;” <declaration list>

Rule 4:
<rest> ::= 
Equivalent EBNF is:-

Rule 1:
<program>
::=
PROGRAM <declaration list> <statement list> END “.”

Rule 2:
<declaration list> ::= <declaration> {; <declaration list>}

Or by adding “syntactic sugar” (inserting additional terminal symbols BEGINLIST and ENDLIST) :-

Rule 1: <program>
::=
PROGRAM <declaration list> “;” <statement list> END “.”

Rule 2: <declaration list> ::= <declaration> | BEGINLIST <declaration list> “;” ENDLIST

3. Top-Down Recursive Descent Parsing

Grammar is:-

Rule 1:
<program>
::=
PROGRAM <identifier> “;” <block> “.”

Rule 2:
<block>
::=
BEGIN <declaration list> “:” <statement list> END

Rule 3:
<declaration list> ::= <declaration> {; <declaration list>}

Etc

Parser derived by recursive descent from grammar reflects structure of grammar exactly and is derived directly from the grammar and the implied first sets. The implied follows sets are also used if the parser is not to terminate on encountering the first “error”.

In the example below, the action of parser is to obtain a “symbol” (lexeme) via the procedure “read_sym” (which is the lexical analyser in this example), and determine if this “symbol” (i.e. the “current” symbol) is a valid symbol given the grammar above. The “lexical level” is assumed to be that of the terminal symbols in the grammar above.
[image: image1.wmf]READ

WRITE

a

b

AT

IN

d

$

<program>

<program>::= READ <read_rest>

<program>::= WRITE <write_rest>

<read_rest>

<read_rest>::= a <read_rest> b

<read_rest>::= AT

<write_rest>

<write_rest>::= a <write_rest> d

<write_rest>::= IN

4. First and Follows Sets

Given the grammar below:-

Rule 1:
<program> ::=
PROGRAM <declaration list> “:” <statement list> END “.”

Rule 2:
<declaration list> ::= <declaration> {; <declaration list>}

Rule 3:
<declaration> ::= DEC <rest> | DEFINE <rest> | <identifier> = <expression>

Rule 4:
<identifier> ::= <letter> (<letter> | <digit>)*

Rule 5:
<letter> ::= “a” | “b” | “c” | …| “z” | “A” | “B” | “C” | … | “Z”

Rule 6:
<rest> ::= …

Then:-

First(program) = {PROGRAM}

First(declaration list) = {DEC, DEFINE, a, b, c, … z, A, B, C, …, Z}

Follows(program) ={DEC, DEFINE, a, b, c, … z, A, B, C, …, Z}

Follows(declaration list) = {:}
5. Top-Down Table Driven, LL1 Parsing

(A simpler) grammar is:-

<program> ::= READ <read_rest>

Production 1

 |

 WRITE <write_rest>
Production 2

<read_rest> ::= “a” <read_rest> “b”
Production 3

 |

 “AT”

Production 4

<write_rest> ::= “a” <write_rest> “d”
Production 5

 |

 “IN”

Production 6
String to be parsed is:-

READ a a a AT b b b

Parse Table is:-
[image: image2.wmf]PROGRAM parser;

 TYPE symbol = (sym_program, sym_identifier, sym_semi);

 VAR current: symbol;

 PROCEDURE read_sym(VAR current: symbol);

 BEGIN

 ..

 END;

 PROCEDURE error(s: string);

 BEGIN

 ….

 END;

 ... other (forward declared) first functions, e.g. first_const_dec

 FUNCTION first_block(current: symbol): Boolean;

 BEGIN

 first_block:= first_const_dec(current)

 OR

 first_type_dec(current)

 OR

 …

 END;

 ... other (forward declared) recognition procedures

 PROCEDURE rec_identifier(VAR current: symbol);

 BEGIN

 …etc

 END;

 PROCEDURE rec_block;

 PROCEDURE rec_declaration_list(VAR current: symbol);

 BEGIN

 ...etc

 read_sym(current)

 END;

 PROCEDURE rec_statement_list(VAR current: symbol);

 BEGIN

 ...

 read_sym(current)

 END;

 BEGIN

 rec_declaration_list(current);

 IF current <>

 ELSE rec_statement_list(current);

 read_sym(current)

 END;

BEGIN

 read_sym(current);

 IF current = sym_program THEN

 BEGIN

 read_sym(current);

 IF current = sym_id THEN

 BEGIN

 read_sym(current);

 IF current = sym_semi THEN

 BEGIN

 read_sym(current);

 IF first_block(current) THEN rec_block(current)

 ELSE error(‘block expected’);

 IF current <> sym_dot THEN error(‘. Expected’)

 END

 ELSE error("; expected")

 END

 ELSE error(‘identifier expected’)

 END

 ELSE error(‘PROGRAM expected’)

END.

Initial

declarations

First functions

Recogition

procedures

nested to

reflect

structure of

grammar

Get initial symbol

If valid initial symbol

then get next symbol and

continue parsing process

Else report invalid

initial symbol

If valid second symbol

then get next symbol

and continue parsing

process

Else report invalid

second symbol

If valid third symbol

then get next symbol

and continue parsing

process

Else report invalid

third symbol

Call first_block to determine if valid first symbol for non-terminal "block", if valid then

call rec_block else report invalid first symbol for "block". If final symbol (read by last

statement in rec_block) is not "." then report error, else terminate, i.e. string is valid.

Action of Parser is:-

Input Buffer

Stack

Rule Applied

^READ a a a AT b b b $

$ <program>

^READ a a a AT b b b $

$ <read_rest> PROGRAM

Production 1

READ^ a a a AT b b b $

$ <read_rest>

None

READ^ a a a AT b b b $

$ b <read_rest> a

Production 3

READ a^ a a AT b b b $

$ b <read_rest>

None

READ a^ a a AT b b b $

$ b b <read_rest> a

Production 3

READ a a^ a AT b b b $

$ b b <read_rest>

None

Etc

Etc

READ a a a AT b b b $^

empty

None

Problems:-

LL1 grammars with right-hand side productions which begin with non-terminals or which are empty, i.e. LL1 grammars that are NOT S-Grammars.

Example:-

(Partial) grammar is:-

<program> ::= BEGIN <rest> “.”

<rest> ::= <statement> “END” | 
<statement> ::= …
String to parse is:-

BEGIN END

Resulting parse table is constructed using rules for LL1 grammars that are NOT S-Grammars, e.g.

[image: image3.wmf]BEGIN

Additional Terminal1

.

additional terminal2

END

$

<program>

<program>::=BEGIN <rest> .

<rest>

<rest>::= <statement> END

<rest>::= <statement> END

<rest>::= <statement> END

<statement>

<statement>::=BEGIN <statement>

<statement>::=<additional_rule> <additional_terminal1)

<statement>::= .

<statement>::=<additional_rule><additional_terminal2>

<additional_rule>

<additional_rule>::=<additional_terminal1>

<additional_rule>::=

e

6. Bottom-Up Shift Reduce Parsing

(Another) grammar is:-

<program>

::= <leading_syms> <final_sym>

<leading_syms>
::= “LEADING” | <leading_syms> “ENDLEADINGSYMS”

<final_sym>

::= “FINAL”

String to be parsed:-

LEADING ENDLEADINGSYMS FINAL

Right-Most Derivation:-

<program> -> <leading_syms> <final_sym>

 ->

 <leading_syms> FINAL

 ->

 <leading_syms> ENDLEADINGSYMS FINAL

 ->

 LEADING ENDLEADINGSYMS FINAL

Action of Parser is:-

[image: image4.wmf]Stack

Input

$

^LEADING ENDLEADINGSYMS FINAL $

$LEADING

$<leading_syms>

$<leading_syms> ENDLEADINGSYMS

$<leading_syms>

$<leading_syms> FINAL

$ <leading_sysms> <final_sym>

$<program>

Action

Stack Unmatched Input

Shift

Reduce LEADING to <leading_syms>

Shift

<leading_syms> ENDLEADINGSYMS FINAL

Reduce <leading_syms> ENDLEADINGSYMS to <leading_syms>

Shift

<leading_syms> FINAL

Reduce FINAL to <final_sym>

Reduce <leading_syms> <final_sym> to <program>

<leading_syms> <final_sym>

Accept

<program>

LEADING^ ENDLEADINGSYMS FINAL $

LEADING^ ENDLEADINGSYMS FINAL $

LEADING ENDLEADINGSYMS^ FINAL $

LEADING ENDLEADINGSYMS^ FINAL $

LEADING ENDLEADINGSYMS FINAL^ $

LEADING ENDLEADINGSYMS FINAL^ $

LEADING ENDLEADINGSYMS FINAL^ $

LEADING ENDLEADINGSYMS FINAL

LEADING ENDLEADINGSYMS FINAL

<leading_syms> ENDLEADINGSYMS FINAL

<leading_syms> FINAL

Chris Harrison, Ver 0.1, Feb 2002.

