UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Entia non sunt multiplicanda praeter necessitatem.

“No more thnigs should be presumed to exist than

are absolutely necessary” (Occams’s Razor)
Lecture 0. Introduction

This lecture course is concerned with the design of programming languages
 and the implementation of software support for executing programs and larger-scale software systems
. It is beyond the scope of a single course such as this to examine in detail the design and implementation of languages from each of the programming language paradigms
 Instead, fundamental and general concepts and principles which underpin the systematic design of programming languages, and also techniques for systematically developing or (software) engineering
 implementations of programming languages, will be examined and shown to have a practical application.

0.1 Background
The study of programming language theory and of compiler construction may seem rather a chore (bore?), after all, each student attending this course should already be capable of using a programming language and exploiting a compiler
. However, some notions are so fundamental to a “science” that they just don’t seem to “go away”
 and in “computer science” formal languages as a direct means of expressing a desired computation are such a notion. We can abstract away from the details of a specific computation (or class of computations) by developing descriptions of “requirements” to be satisfied by some program or larger-scale software system, or by using some notation to “design” a gross architecture for a software system in terms of an organisation of sub-components and their interfaces, or by considering some “new” approach (usually not actually “new” at all - but based on a class of existing algorithms that purports to provide a “novel” means of determining and representing a computation), yet the very nature of the relationship between physical computing devices and programming languages means that we (currently) cannot efficiently exploit the former without efficiently realising the latter! We should also be aware, that the related field of “software tools” and “development environments” also builds directly on the concepts, principles and techniques used to develop programming languages and their implementations, and even the most recent “applications” exploit directly those same notions
.

0.1.1 A Note on Style

The style of presentation of these lecture notes is intended to enable the reader to separate concerns which can usefully be separated, i.e. the main “thread” of the discourse is contained in the hierarchically organised sections and subsections. Additional material is provided in footnotes and appendices. The reader is encouraged to read each lecture at least once and to reason about the implications of the concepts, principles and techniques that are introduced in the wider context of the notions outlined in footnotes and associated references.
0.2 Program Language Design
The development of programming languages can be characterised by the need for ever higher levels of abstraction.
 Typically, individual or particular programming languages can be “collected” together into related “families” of languages each member of which embodies fundamental and general notions exemplified by a programming language paradigm, e.g. the imperative, functional, declarative and concurrent paradigms, etc.
. A particular language may, of course, embody notions drawn from more than one paradigm!

Essentially, a programming language is a notation which permits a source description of a program (or larger scale software system) to be constructed. Each program, or larger scale software system, comprises a collection of one or more algorithms and one or more data structures.
 The purpose of a program is to compute
 values which are transformations on inherent or supplied input values.

0.2 The Imperative Language Paradigm
The imperative programming language paradigm has its basis in the notions of command(s) and updateable variable(s). We will exploit this paradigm during this lecture course for a number of theoretical and practical reasons, in particular, because an imperative language (with a Pascal-like syntax and semantics) has the advantage of being simultaneously realistic, in the sense that Pascal-like languages have been used for many years to develop both small-scale programs and also larger-scale (modular) software systems, and regular enough (in its design) to reason about in a systematic manner.

0.3 Some Terms and Initial Concepts Explained

The following sections provide brief introductory descriptions. The reader is encouraged to find references in texts and to read alternative descriptions of these terms and concepts.

0.3.1 Translators and Assemblers
A translator accepts a source description of a program (or component of some larger scale software system) written in a programming language and generates an object or target representation of the same program in another language. If the source description is written in a high-level programming language and the object or target language is a low-level language, e.g. an assembly language or machine code, then the translator is usually termed a compiler.

An assembler translates an assembly language representation into a corresponding machine or executable representation.

0.3.2 Compilation and Execution

To execute a program whose initial source description is written in a high-level language two distinct steps must be taken:-

1. Compile the source description into an object or target representation written in an object or target language.

2. Load and execute the object language.

Note, first, that step 1 need only be (successfully) performed once in order that step 2 can subsequently be repeated any number of times, however, any changes to the source description of a program require that it is subject to a further (successful) compilation prior to execution.

Note, secondly, that step 1 is rarely a single process, i.e. typically the object or target language representation takes the form of an object or target “module” which must be linked with other (previously compiled) object or target modules (e.g. standard functions, input and output procedures) in order to form a single executable representation. A linker program is usually triggered “automatically” at the end of the compilation process to perform this process.

0.3.3 Interpretation
Interpretation provides an alternative to the compilation process. Typically, an interpreter performs a similar function to a compiler in that it provides a means of executing the source description of a program. However, an interpreter differs from a compiler in that it “reads” each source language statement, analyses the statement and then proceeds to carry out the operations expressed in that statement. Whilst, at first glance, the notion of interpretation seems to have the advantage of providing a simpler “interface” to a user it has the disadvantages listed below:-

1. No persistent representation
 is kept of the analysis of each source language statement. Thus, if a statement is executed many times, e.g. in an iteration, its analysis must be repeated.

2. Some memory resources must be assigned to the interpreter throughout the execution of a program reducing the memory available to that same program for storing data structures.

3. The interpreter program must be present on any machine used to execute the program.

0.3.4 A Hybrid Approach
A translator-interpreter provides a means of alleviating the high execution overhead and memory requirements associated with an interpreter. The basis of such a “hybrid” approach is the notion of an “idealised machine” whose structure is inherently “simple”
. The input to a translator-interpreter is a source description of a program written in a programming language. The output is an object or target language representation written in the machine code of the “idealised” machine. This “intermediate” representation is interpreted to execute the program as a second step, i.e. the resulting very simple linear list of low-level instructions is executed by the interpreter which can be made small in size and fast in execution. One fundamental advantage of this approach is that only the interpreter needs to be rewritten if the same program (or programs) are to be executed on another physical machine.

0.3.5. Virtual Machines
The processes of translation and interpretation are similar in that both enable statements written in some source language to be (ultimately) carried out by executing equivalent sequences of instructions written in the language of some machine. One means of abstracting over the differences between the two process is to hypothesise the existence of a hypothetical computer or virtual machine
 whose “machine language” is an appropriate intermediate representation of the source description.

0.4 Compiler Design and Construction
Until relatively recently times the notions of compiler design and construction were considered relatively “difficult” even for “experienced” software developers. Historically, initial compilers (constructed many years ago) took several man-years to construct because the technology available, i.e. fundamental understanding of programming language design and of the translation process, of the tools and techniques which enable the translation process to be systematically performed, were simply not known or available.

A definition of the source language to be executed is central to the systematic construction of a compiler. In addition to a definition of the source language’s syntax, some form of description of the meaning or semantics of each statement in the source language must be available. Simple formal notions for specifying the syntax have been known and used for some time, however, no universal means of formally specifying the semantics of a programming language is currently available.

0.4.1 Stages of Compilation
Today, with the benefit of hindsight and the collective work of many individuals, the development of a compiler is rather less problematic. Fundamental to our “current” understanding of a systematic approach to compiler construction is the notion of partitioning the compilation process into various distinct but related stages, i.e.

1. Parsing or input validation

2. Semantic analysis

3. Code generation

A compiler itself will reflect, to a greater or larger degree, this fundamental separation of (related) concerns. However, each individual stage may require more than one compiler component, for example, a compiler will (typically) have a lexical analyser component which is used by a syntax analyser or parser component, etc.

Other components of the compiler may be associated with more than one distinct stage (or sub-stage) in the compilation process, e.g. the symbol table component, components for handling errors, etc.

The designer of a compiler may choose a variety of different ways of sequencing the compilation stages into “phases”. Typically, each phase is concerned with the translation of one source description “component” and this may be done such that:-

1. Each component is subject to all phases of the compilation process before the next component is processed (so-called “single-pass” compilation)

or, conversely,

2. The whole source description is subject to a single phase of the process before it is made available to the next phase (so-called “multi-pass” compilation)

Where a multi-pass approach is adopted, typically, two phases are implemented (so-called “two-pass” compilation), i.e. lexical and syntax analysis in the first phase and semantic analysis and code generation in the second pass.

Lexical analysis is concerned with the reading of the source description (usually) one character at a time and determining which syntactic tokens (or lexemes) are included in the text. Lexemes form classes, e.g. keywords, identifiers, operator symbols, punctuation symbols etc. Syntax analysis or parsing is concerned with determining if the lexemes derived from the source description form a syntactically valid string in the programming language. Either interleaved with the syntactic checks or implemented as a second stage of checking after syntactic checking are semantic checks which are responsible for determining if the meaning of the syntactic structures is valid.

Typically, the representation of the source description produced by the syntax and semantic analysis stages is a parse tree (or derivation tree). Using this representation, an initial executable representation is constructed - typically as a sequence of instructions in a common reduced (or canonical) form which assume the existence of some machine upon which they may be executed.

The stages thus far in the compilation process are often referred to collectively as the “front-end” of the compilation process since they make no assumptions regarding the actual physical hardware on which the executable representation will eventually run.

The “back-end” of the compilation process may optionally begin with attempts to “improve” the initial executable representation, for example, by “optimising” the “code” (representation) to reduce instruction volumes and hence increase “execution speed”

NOTE:

Any “code optimisation” (however sophisticated or “clever”) must leave the resulting executable representation logically unchanged.
The last stage of the compilation process is the production of the “final” executable representation suitable for a “real”, i.e. physical, or abstract machine. At this stage, properties of the “target” machine upon which this “final” executable representation will run may be exploited, e.g. memory organisation, the instruction set, support for input and output, etc.

 0.4.2 Compiler Construction

Work on techniques and tools to support compiler construction has been undertaken for many years. One means of automating (some of) the activities associated with compiler construction is to use a so-called “compiler-compiler” which inputs a description of the syntax (and possibly some of the semantics) of a programming language and which outputs components of a compiler in varying states of completeness, typically, at least a lexical analyser and parser and possibly some components capable of limited semantic analysis. Lexical analysers and syntax analysers provide a basis for translation between programming languages in general and hence generators for such analysers have been available for some time, e.g. yacc and lex.

More general considerations have encompassed the need to develop programming languages whose structure (syntax and semantics) enables a systematic approach to compilation. The notion of compilers which are capable of compiling “themselves”, so called self-compiling compilers has its basis in such regular languages. Typically, using this approach involves “bootstrapping” using a translator for another language, i.e. a minimally expressive subset of a given language is “hand-crafted” and translated into a language for which a compiler does exist. The resulting program may then be used to generate a compiler for the “full” language. Finally, a compiler for the “full” language is written in the “full” language and provides the first “self-compiling” compiler !

0.4.4 Design Constraints
The first and overriding constraint that must be satisfied is that the compiler must be reliable. Secondly, the compiler should produce an executable representation which is sufficiently efficient.

More generally, compiler construction techniques should support the notion of extensibility and component re-use since a given language will, over a period of time, undergo revision, amendment and augmentation and typically (when obsolete) will be replaced by another language.

0.5 Summary and Conclusions
This lecture has considered some introductory aspects of the related topics of programming language design and language implementation. The need to develop programming languages whose very structure and organisation makes them amenable to systematic implementation has been identified as being paramount. To paraphrase a famous statement by a real computer scientist
 “any fool can design a programming language that is difficult to compile” !

Chris Harrison, June 1997.
� The term programming language is used to denote a formal language† defined by specifying its syntax and semantics (which are parts of the language itself). A programming language is created (or modified) only by a conscious act. Because of the desirability of automated translation of strings written in a programming language into instructions which are directly executable by a machine, programming languages have to be formal languages.

† Note, however, that whatever can be represented in a formal language can also be represented in a natural language, e.g. English !

� A program, whose source description commonly takes the form of a string written in a programming language, can be viewed as both a mechanism, i.e. an abstract symbol manipulator that can be turned in a concrete symbol manipulator whose behaviour is then observable, for example, by supplying a computer to it !; and also as a consciously created abstraction developed by including some (and hence excluding other) components of whatever it is an abstraction of. The term software system is used to denote a composition (denoted by *) of one or more software components, i.e.

software = software system = (software component) *

A software component may be a module, or a program, or a routine, or any other description written in formal language, i.e. (with alternative denoted by ‘|’)

software component = module | system | program | routine |

� The term programming language paradigm is used to denote a pattern or example against which a particular instance or realisation of that pattern may be compared or tested for conformance. A plane in geometry serves the same purpose - it cannot be defined ‘formally’ but you can test for one: see if any two points on a surface lie wholly in the surface.

� The term software engineering is an intentionally provocative term (see original NATO conference proceedings from 1968!) whose meaning is implied by the subsuming class or genus, i.e. engineering, within which ‘software engineering’ is distinguishable because of its particular characteristics, for example, because of the materials or processes undertaken during software production.

� I can recall thinking about those who taught me about compilers and being reminded of stories about the Platonic school of philosophy - both seemed almost obsessed with a small number of fundamental notions which were rather obscure and in some cases deemed dangerous for the uninitiated to be told of. They held long involved discussions about these abstract notions entirely independently of any actual experiments to determine if their reasoning was “sound”.

� Many people are under the illusion that Newton’s work was in some way “wrong” in the sense that Einstein’s theories are “better”. Nothing could be further from the truth - the values predicted by Newton for planetary motion (with some minor corrections and using a somewhat different technique for their calculation) were more than accurate enough to guide spacecraft to the Moon and to the major planets of the solar system.

� What is the last “message” issued by Netscape Version 3 when it “boots up” ?

� The term abstraction is used to denote a means of reasoning about collections of “things” by temporarily setting aside mutual differences between individual members of a collection and concentrating, instead, on similarities.

�

∆ An imperative programming language has its basis in the concept of a command that updates variables held in storage by assignment. The variables in a program written in an imperative programming language are intended for use in computations and as a consequence have a set of associated operators which enable an action upon them to have a well defined effect. The two most important operators are comparison and assignment, i.e. the test for equality, (or order in the case of ordered types) and the enforcement of equality respectively. An isomorphism is clearly identifiable between programming language variables and expressions in a programming language, i.e. variables store values, whilst expressions yield values.

∆ Declarative (functional) programming languages seek to overcome the problem of "doing away" with assignment by requiring programs to be stepwise refined into hierarchies of function definitions which are ultimately used to define the expression which represents the result of the program.

∆ Declarative (logic) programming languages also avoid explicit updating of variables albeit using a different technique than that associated with functional languages.

∆ Concurrent programming languages have their conceptual basis in notations and techniques for expressing potential parallelism and for solving the resulting synchronisation and communication problems.

∆ The object oriented paradigm has its conceptual basis in record structures (called objects) intended to be named collections of values (attributes) and functions (methods). Collections of objects form classes and a subclass relation defined on classes enables methods to work "appropriately" on all members belonging to the subclass of a given class.

� The (classical) notion of program = data structure + algorithm (Wirth) applies equally well to more recent programming languages and programming language paradigms, for example, in the object oriented paradigm these notions may appear to be combined but this is due to the form of representation used.

� The term algorithm is used to denote a concept due to a particular form of abstraction, i.e. executional abstraction[Dijk79]. The purpose of executional abstraction is to map different computations upon each other. To do this, it must be possible, first, to distinguish between different computations, but the ability to distinguish computations from one another is not in itself enough, rather, it is a prerequisite of a more powerful form of reasoning, namely, collecting together similar computations into a class, abstracting away from the mutual differences between members of a class based upon properties of the class as a whole, and, as a result, making assertions about each member of a class including the specific computation under consideration. Thus, a computation is what an algorithm abstracts over, i.e. an algorithm embodies a class of computations which may take place ‘under its control’.

� Although programs (and larger scale software systems) are either translators or event-driven systems, each involves the computation of values from inherent or supplied values. Of course, a given program (or larger scale software system) may comprise components which exploit both translation and event-driven notions !

� The term persistent is used to denote a means of providing access to values after some event which created those values has terminated. For example, persistent values in a “database” may be accessed after the program which computed those values has ceased to execute.

� Abstractions and physical artefacts which are inherently simple have the distinct advantage that they can be usefully combined to form more complex “things” whose structure and behaviour can be reasoned about in terms of the collective properties and behaviour of their simpler components !

� A virtual machine, in this context, is a definition of an (intermediate) language and vice-versa.

� Originally, “any fool can write a compiler for correct source programs”.

CT206 Languages and their Implementation Ver. 0.1 Chris Harrison 1997
Page 1

