UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Lecture 1. Formal Language Theory

This lecture is concerned with theoretical notions drawn from an area of study termed “formal language theory”, and with the practical implications of those same notions. This lecture examines how descriptions of programming language syntax and semantics should be based upon sound theoretical notions, in particular, the need to avoid syntactic and semantic ambiguity when designing a programming language.

1.0 Some Basic Notions

A formal language is a conciously created or modified artefact, i.e. formal languages are a product of human reasoning. Programming languages are formal languages that are defined by specifying their syntax (composition rules) and semantics(meaning) both of which are “part” of the language.

Central to the specification of the syntax of a programming language are the interrelated notions of a grammar and a set of strings or language.� Since the development of the Algol-60 programming language�, the most commonly used technique for specifying the syntax of a programming language has been to develop a grammar which defines the language as a (possibly infinite) set of strings. Originally, a grammar was represented using what is variously referred to as Backus Normal Form�, Backus-Naur Form and context-free grammars. Theoretical results obtained from such context-free grammars have enabled programming language designers to exploit a sound theory of programming language definition. Unfortunately, the theory of the semantics of programming languages is less well developed, however, it is clear that a programming language designer can provide an operational definition(either interpretive or computational), and a denotational or axiomatic definition (either relational or deductive) of the semantics of a programming language.�

1.0.1 Criteria For Evaluating the Definition of a Programming Language

Some fundamental critera can be used to evaluate the effectiveness of the definition of a programming language:-

1. Does the definition of the programming language provide a complete description of all aspects of the programming language ?

The definition of the programming language must be written in some (other) language, and that language must itself be completely unambiguous for the definition written in it to be complete and consistent, hence the need for a formal notation technique as a means of specifying the programming language.

2. Are all ambiguities in the programming language intentional and are such ambiguities immediately clear from the language’s definition ?

Programming languages and programs themselves are not simply mathematical “objects”� - they are conciously created artefacts, i.e. they are (arguably) created for a purpose. Thus, where ambiguities are present they must be resolved in the sense that a single meaning must be ascribed to any string written in the programming language. This meaning may well be given by the compiler rather than the programming language’s definition - of course the compiler is therefore an alternative form of definition for a programming language!

3. Is the language used to define the programming language easily understood and machine independent ?

We must ensure that the compiler is not the sole means of defining the language, i.e. that we have a form of definition which does not rely on any physical or abstract mechanism.

4. Does the method used to define the programming language enable the systematic construction or engineering of a complier for the programming language ?

It is not intrinsically difficult to design a programming language. It is difficult, however, problematic to define a programming language such that the very form of its definition facilitates the systematic construction or engineering of a compiler for that programming language. One basis for such a form of definition is a notation-technique that embodies a method for its use, for example, (and as you should know) the notation technique BNF embodies the fundamental and general notion of stepwise refinement. If we are capable of developing systematically a refinement of the grammar which defines the syntax of a programming language then the very nature of the definition, i.e. the regular pattern it embodies, provides a basis for developing a parser whose structure is an isomorphism of that pattern using the technique called program design by recursive descent.

Example:-

Pattern In Grammar		Example Production		Corresponding Structure

								In Parser

sequence			<seq> ::= <nt1> <nt2> t1	rec_nt1(current);

 			rec_nt2(current);

								IF current <> t1 THEN error(...);

alternative			<alt> ::= <nt1> | <nt2> 	IF first_nt1(current) THEN

								 rec_nt1(current)

								ELSE

								IF first_nt2(current) THEN

								 rec_nt2(current)

								ELSE error(...);

	

Unfortunately, the complexity of the “pattern” embodied by a description of the semantics of a programming language can not be described in terms of similarly simple “semantic correspondences”. Typically, such patterns are represented in terms of complementary and increasingly abstract techniques listed below:-

1. 	An abstract machine executing the program step-by-step - an “interpretive” model

2. 	A function which maps a program into its entire computation (if any) where a computation is 	defined as a finite sequence of memory states - a “computational” model

3.	Axioms (and derived theorems) which define the relationship between the initial and final 	memory states produced by executing the program and by ignoring the computation 	“stretching” between these two states - a “relational” approach

4.	Propositional formulae which describe properties of memory states before and after execution 	of each part of a program (as in 3. the meaning of the language is defined by axioms, 	together with rules of inference) - a “deductive” approach.

Note. 	

A detailed consideration of formal approaches to the definition of programming language sematics is beyond the scope of this lecture. The following sections are concerned with syntactic notions only.

1.2 A Classification of Grammars

The classical notion of a grammar due to Chomsky is associated with a classification of grammars into four types, Type 0 which has no restriction on the productions, Type 1 or context-sensitive , Type 2 or context-free grammars and Type 3 or regular grammars.

∆ 	Type 0 grammars have no restrictions on their productions and are therefore the most 	“powerful” (expressive) grammars with productions of the form:-

	

	a -> b where a and b are arbitrary strings of non-terminals and terminals

∆ 	Type 1 grammars are termed context-sensitive and have the restriction that the number of 	symbols on the right-hand side of a production is greater than or equal to the number of 	symbols on the left-hand side. Formally, for a production:-

	

	a -> b then we have | a | <= | b | (where | s | denotes the length of string ‘s’)

	Productions are of the form:-

	F1 A F2 -> F1 b F2

	where F1, F2, b are strings of non-terminals and terminals respectively and A is a single 	non-terminal. Thus A may be replaced by b only when “surrounded by” (i.e. in the 	context of) F1 and F2.

	

∆	Type 2 grammars are termed context-free. If the grammar has the further property that the 	left-hand side of the production is a single non-terminal symbol then the grammar is of 	type 2.

	Productions are of the form:-

	A -> b then where A is a single non-terminal and b string of non-terminals and terminals.

∆	Type 3 grammars are termed regular or right-linear. If each production of the grammar is 	of the form:-

	A -> a

	A -> aB

	where a is a terminal symbol and A and B are non-terminal symbols then the grammar is 	of type 3.

This grammar hierarchy is inclusive, i.e. a type 3 grammar is also a type 2, 1 and 0 grammar.

Regular grammars are powerful enough to describe the symbols (lexemes) of a programming language, i.e. identifiers, key or reserved words etc. However, they are insufficiently powerful to describe syntax that involves bracketing, e.g. expressions and block constructs (BEGIN/END, {} etc). Such constructs require a context-free grammar.

	

Thus, of particular significance to programming language designers are context-free grammars and regular grammars because the former can be used to define the syntax of most “modern” programming languages and the latter to define the syntax of lexemes.

1.3 Ambiguity (and its avoidance)

Look at the following sentence written in English:-

“He saw her with the telescope.”

The very nature of English, i.e. it is a natural language, enables us to construct syntactically valid strings which are meaningless� or, as in the case of the string above, ambiguous in the sense that they may be open to more than one interpreted meaning. An important requirement of a programming language is that it is unambiguous since the compiler for that language will be an automaton which must deterministically translate all valid strings in language into the instructions of some physical or abstract machine. In practice, the definition of even a particularly well designed programming language will have a handfull of “known” ambiguities which are treated slightly differently by individual compilers.

The formal definition of ambiguity is usually given in terms of a property called a frontier of a simple abstraction called a derivation tree (or parse tree)�. The practical implication of the requirement that a programming language is unambiguous is that the language’s designer is responsible for identifying and (where feasible) resolving any ambiguity. Typically, where a systematic approach has been used to develop the syntax of the programming language, removing syntactic ambiguity is a relatively simple task.

Example:-

The notion of a grammar which is LL1 (Left Linear with a 1 symbol look-a-head requirement) provides a basis for the systematic development (by recursive descent) of a parser for the language defined by that grammar. Where the language does not satisfy the LL1 condition (but is still left linear with some value >1) it is a simple matter to insert some so-called “syntactic sugar” to return the grammar to LL1’ness:-

Ambiguous Grammar

<ambiguous> ::= <identifier> ::= <expression>

 |

 <identifier> <optional parameter list>

Unambiguous Grammar

<unambiguous> ::= <identifier> ::= <expression>

 |

 CALL <identifier> <optional parameter list>

In this example, the terminal symbol (actually a reserved word) CALL has been introduced into the production rule in order to remove the ambiguity associated with the original production rule in which each alternative begins with the same non-terminal. The notion of semantic ambiguity may be more problematic and require more effort on the part of the language designer�.

Aside:-

In general, it is clear that when data structured design methods (e.g. program design by recursive descent) are used grammars and types are complimentary tools since grammars are used to describe the concrete syntax of input and output data whereas types are used to describe the abstract syntax of the same data in a form which is suitable for efficient storage and manipulation after it has been input or before it is output by a program. It can also be shown how types can be reasoned about independently of their values, for example, by writing expressions with types instead of operand values and stating their result types� an alternative form of expression to that supported by an initial programming language allows similar reasoning to be used in annotating the nodes of a parse tree with type information - a process which a compiler automates ! (see the example following)

Example:-

The usual definition of the grammar for Pascal expressions can be shown to define the precedence of the operators, and a BNF version of the grammar can be shown to define left to right precedence for operators with otherwise equal precedence. But, EBNF or syntax graph definitions of the same grammar can be shown to have ‘unknown’ left to right precedence due to the use of iteration constructs. In the example below, the top part of the parse tree for the expression "1 * 2 + 3" has its sub tree for "*" ‘automatically’ classified as one of the two terms which are the operands of the "+" operator. This provides the required precedence relationship between "*" and "+" without the use of brackets.

 <expression>

 |

 <simple expression>

 |

 <term> + <term>

 | |

 <factor> * <factor> <factor>

 | | |

 <constant> <constant> <constant>

1.4 Regular Languages and Regular Expressions

A regular language is defined by a regular grammar and can also be defined by an equivalent regular expression. Consider, for example, a regular grammar for identifiers in the Pascal language. This grammar allows identifiers (denoted by ID) to be constructed according to the Pascal ‘rule’ which states that “an identifier must begin with a letter, and may be followed by an arbitrarily long string of letters and digits”:-

ID -> l

ID -> lR

R -> l

R -> d

R -> lR

R -> dR

where l is a letter and d is a digit.

The operations for regular expressions will be familiar to students who have encountered simple formal notations for defining grammars, e.g. BNF, EBNF etc:-

∆ Concatenation

∆ Alternation

∆ Repetition (Kleene Closure)

The rules for constructing regular expressions are given below:-

∆ e is a regular expression

∆ If ‘a’ is an alphabet symbol then a is a regular expression, i.e. string of length 1 which comprises the alphabet symbol a

∆ If r and s are regular expressions (sets of strings) then

	1. 	r|s is a regular expression denoting the union of the sets of strings represented by 		r and s, thus a string p Œ iff (p Œ r ⁄ p Œ s)

	2.	rs is a regular expression denoting the set of strings such that each string is the

		concatenation of a string r and a string s (in that order), thus a string p Œ rs can 		be decomposed into two parts p = p1 p2 such that p1Œ r Ÿ p2 Œ s

 	

	3.	(r)* is a regular expression denoting zero or more concatenations of strings 			defined by r with themselves, thus a string p Œ (r)* if it can be decomposed into 		zero or more parts p = p1 p2... pn such that "i. pi Œ r

	

Example:-

Given a simple alphabet of {0, 1} then a correspondence between regular expressions and regular languages is shown below:-

REGULAR EXPRESSION	CORRESPONDING REGULAR LANGUAGE

0 | 1					{0, 1}

(0 | 1) (0 | 1) 				{00, 01, 10, 11}

(0)*					{e, 0, 00, 000, ...}

(0 | 1)*					{all sequences of binary digits}

Regular grammars provide the theoretical framework for the construction and recognition of lexemes during lexical analysis, it is also common practice to use regular expressions to specify lexemes. Thus, a lexical analyser for, say, the Pascal language can be specified using regular expressions for each Pascal lexeme. In the example below, a regular definition, i.e. a set of named regular expressions, provides a definition for identifiers in Pascal:-

letter = {A | B | ...| Z | a | b | ... | z}

digit = {0 | 1 | ... | 9}

identifier = letter (letter | digit)*

1.5 Finite State Automata

A regular expression defines the language accepted or generated by a finite-state automaton. Algorithms for recognising regular expressions can therefore be based upon finite state automata and can be “driven” by a transition table. The recognition algorithm is completely general but the table driving the algorithm is specific to the tokens of a given language. The practical implication of these notions is that software tools can be constructed whose input is a specification (in the form of regular expressions of a language’s tokens) and which automatically produces the translation table and which add the recognition ‘code’ for the general recognition algorithm. Thus, a lexical analyser for a language can be generated ‘automatically’.

1.6 Summary and Conclusions

This lecture has considered some fundamental theoretical notions which underpin the field of study termed “formal language theory”. You should do some reading “around” this subject as it large enough for a series of lecture courses in its own right, and also because the following lectures will exploit your understanding of fundamental theoretical notions.

Chris Harrison, June 1997.

1.7 REFERENCES

As stated in the footnote the classic text is:-

Backhouse, Roland C.,

“Syntax of Programming Languages Theory and Practice”,

Prentice-Hall International Series in Computer Science.

A complementary overview of the concepts and principles introduced in this lecture can be found in:-

Rayward-Smith, V. J.,

“A First Course in Formal Language Theory”

Blackwell Scientific Publications, 1983

A very thorough introduction to formal language theory can be found in:-

Bennet, J. P.,

“Introduction to Compiling Techniques”

McGraw-Hill, 1990

�
1.8 Questions and Exercises

	

Note:- You are advised to read the references when attempting these exercises !

1. Write down examples of type 0, type 1, type 2 and type 3 grammars and explain how it is possible to arrive at a type for each.

2. Explain, with the aid of examples, how type 2 grammars may be exploited practically in the description of programming languages.

3. Define the following terms:-

a) Alphabet

b) String

c) Grammar

d) Language

e) Regular language

f) Regular expression

4. As we have considered in this lecture, a program written in some programming language consists of a string (sequence of terminal symbols) termed a sentence. A program is syntactically valid if it can be derived from the starting symbol using the production rules to rewrite non-terminals by the right-hand sides of their productions.

Consider, for example, a grammar G for a language whose strings are given by set comprehension:-

{anbm | n, m >= 0}

This language is the set of all strings composed of one or more of a’s followed by one or more b’s. Thus, the grammar is:-

G = ({a, b}, {S, A, B), P, S)

where the set of terminals Vt = {a, b} and the set of non-terminals Vn = {A, A, B} and P is defined by the productions:-

S -> AB	production (i)

A -> aA | e	productions (ii) and (iii)

B -> bB | e	productions (iv) and (v)

The sentence (string) aabb can be generated from the starting symbol as shown below (=> is read as ‘derives’):-

s => AB (using (I))

 => aAB (using (ii))

 => aaAB (using (ii))

 => aaB (using (iii))

 => aabB (using (iv))

 => aabbB (using (iv))

 => aabb (using (v))

The intermediate strings generated by going from S to aabb are termed sentential forms.

i) Explain, in your own words, the difference between a string, a sentential form and a sentence.

ii) Generate two further strings of your own choice in the same language.

Exercises

1. Use the following grammar:-

SENTENCE -> SUBJECT PREDICATE

SUBJECT -> ARTICLE ADJECTIVE NOUN

ARTICLE -> the

ADJECTIVE -> big | small

PREDICATE -> VERB DIRECT-OBJECT

VERB -> ate

DIRECT-OBJECT -> ARTICLE NOUN

NOUN -> peanut | elephant

to derive the sentence “The big elephant ate the peanut” and draw the corresponding parse tree. What type of grammar is this ?

2. A grammar is defined by a quadruple (Vt, Vn, P, S) where Vt is the alphabet (or vocabulary) of the basic symbols of the grammar and is the set of terminal symbols (or just terminals T), Vn is the set of symbols defined by the production rules (the non-terminal symbols), P is a set of production rules and S is a unique (non-terminal) starting symbol. Given the definition of the “Newt” language below:-

Vt = {“VAR”, “;”, “.”, “BEGIN”, “END”, “:=“,

 “IF”, “=“, “THEN”, “WHILE”, “DO”,

 “identifier”, “constant”, “+”, “-”

 }

Vn = {prog, block, idlist, statement_list, statement, expression}

P = {prog -> “VAR” idlist “;” block “.”

 block -> statement | “BEGIN” | statement_list “END”

 statement_list -> statement | statement_list “;” statement

 idlist -> “identifier” | idlist “,” “identifier”

 statement -> “identifier” “:=“ expression

 |

 “IF” “identifier” “=“ expression “THEN” block

 |

 “WHILE” “identifier” “=“ expression “DO” block

 expression -> “identifier” | “constant” | “constant” + “constant” |

 “constant” - “constant”

 }

S = prog

Newt has a type 2 (context-free) grammar as defined above. Note that the form of tokens in Newt is:-

∆ Reserved (or ‘key’) words are composed of uppercase letters.

∆ Special sybols (separators etc) are self-evident.

∆ Identifiers are single uppercase letters and constants are single digit numbers.

Note also two semantic rules, i.e. all identifiers must be declared before use and must only be declared once.

Write down examples of syntactically correct and syntactically incorrect “Newt” programs and draw their parse trees.

�
3. Productions may be recursive, and it is not uncommon for the non-terminal responsible for the recursion to either start or finish the right-hand side of a production as shown below:-

X -> a | Xb

Y -> g | dY

The production X -> a | Xb is said to be left-recursive and the production Y -> g | dY to be right-recursive. Left-recursion can cause problems for some parsing methods and so the following transformation is sometimes made to remove left-recursion:-

X -> a | Xb

is replaced by two productions:-

X -> aB

B -> bB|e

Write down some examples of left-recursive productions and show how the transformation above can be used to remove the left-recursion.

4. Find descriptions of the following:-

a) A real literal in the FORTRAN programming language.

b) A Pascal comment delimited by (* and *)

c) An Ada identifier

Using these descriptions, write down regular definitions of these constructs.

5.

a) Explain with examples the relationship between the concatenation, alternative and Kleene closure operators (as a means of constructing regular expressions) and the positive closure operator p+. Ensure that you show how p+ may be rewritten in terms of the fundamental operators and also how p* may be rewritten in terms of p+

b) Eliminate left-recursion in the following production:-

expr -> expr “+” term | term

where + is a terminal and expr and term are non-terminals.

c) Left-factor the following grammar:-

STMT -> if EXPR then STMT | if EXPR then STMT else STMT | a

where STMT and EXPR are non-terminals and the other symbols are terminals.

d) Eliminate left-recursion from the relavant production in Newt.

e) Left-factor Newt productions whose right-hand sides start with the same strings.

f) Write down regular expressions for Newt identifiers and constants.

� The classical text is Backhouse (see references) in which the following is given:-

An alphabet denoted by T is a finite set of symbols, e.g. the alphabet of the Pascal programming language includes the following symbols:-

PROGRAM ; CONST TYPE VAR PROCEDURE FUNCTION BEGIN END . = <>

(etc)

A sequence denoted by s = t1t2...tn of symbols drawn from some alphabet T is a string or sentence or word over that alphabet whose length (denoted by n) is the number of symbols in the string (or sentence or word). Any two words denoted by u = a1a2...an and v = b1b2...bn can be concatenated together by writing one word after the other, i.e. uv = a1a2...anb1b2...bn There exists a hypothetical string of zero length called the “empty word” which is denoted by L and which has the following property when concatenated with some word denoted by u:-

 uL = u = L u

or, more generally,

uL v = uv

where v is also some word.

The set of all strings of symbols over an alphabet is denoted by T* and includes the empty word L . A language L over the alphabet T is a subset of T*

� Algol-60 was a landmark in programming language design, not least, because of the approach used to specify its syntax and also the considerable body of work which followed on the (formal) semantics of block-structured imperative programming languages.

Aside.

To reminisce, I vividly remember writing my first program (in Algol-60) and compiling and executing it (on an ICL 1903S, those were the days !) The sheer elegence of the language, when compared to other languages I had to learn such as COBOL and FORTRAN was evident even to the spotty undergraduate I undoubtably was in those days.

� The various notations for representing grammars all provide alternative concrete syntaxes for the algorithmic notions of sequence, alternative and iteration.

� The earliest versions of programming language semantics used machines and their actions on programs to define the meaning of a program. A natural extension of this early approach is the notion of an operational semantics which uses an interpreter to define a language, i.e. the meaning of a program is the sequence of internal interpreter “configurations” or “states” which result from the interpretation of that program. The obvious disadvantages of this form of definition are its machine dependence (to understand a language feature may ultimately require that feature to be used in a program and executed on a “real” machine), and the very nature of the interpreter itself, i.e. it takes the form of an algorithm which for non-trivial languages will involve the use of a notation to describe the interpreter which is as complex as the language being defined! A more abstract approach is termed the denotational semantics method in which a program is mapped directly to a meaning called it denotation (which takes the form of a mathematical value, e.g. a number or a function) via a valuation function. One advantage of this form of definition is its modular structure which eanbles individual language features to be reasoned about in isolation. One disadvantage is that the numbers and functions in the denotation must ultimately be represented as “objects” in some physical machine and the valuation function must then be implemented as that machines processor. The axiomatic semantics method defines properties of a language’s constructs (rather than the meaning of a given program) in terms of axioms and inference rules from symbolic logic, i.e. a property is deduced by using the axioms and inference rules to construct a formal proof of a property. The very nature of an axiomatic definition means that it is more abstract than an operational or denotational definition - indeed it may be so abstract that it does not define the meaning of a given program at all!

� Students who have explored some of the thoughts of a truly great computer scientist (Dijkstra) might point out the possibility that this assertion is inaccurate! See “On the Cruelty of Really Teaching Computer Science”.

� Perhaps the best known is “Colourless green sheep sleep furiously.”

� The frontier of a parse tree D is the string defined by the following (recursive) algorithm:-

is_a_frontier(D) = IF is_a_leaf(D) THEN label_of(D)

 ELSE concatenate(frontiers_of(subtrees_of(D)))

� Consider, for example, how the scoping constraint for identifiers in an initial programming language provides a means of ensuring that type definitions are unambiguous. In the example below, each identifier in a type definition represents the definition of a constant of that type, and the language imposes the scoping constraint that the same identifier cannot be used for more than one purpose in a single scope of names - if it did then it would be possible to give more than one value to an expression containing the constant identifier. Thus, an alternative_initial_definition is needed which reorders the constant identifiers in the original enumeration_scope such that subrange_in_alternative can be defined.

TYPE enumeration_scope = (first, second, third, fourth, fifth);

 restricted_definition_in_another_scope = (second, third, fifth);

 alternative_initial_definition = (first, second, third, fifth, fourth);

 subrange_in_alternative = second..fourth;

� In Physics this is called dimensioning. The examples below demonstrate its application here:

 integer + integer is integer

 integer = integer is Boolean

 (red, green, blue) = green..blue is Boolean

CT206 Languages and their Implementation Ver. 0.1 Chris Harrison 1997	Page � PAGE �1�

