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Lecture 2. Compiling - An Initial Overview





A very great deal of research and development effort over many years has led to an understanding of fundamental issues concerned with programming language design, compilation, and also systematic approaches to compiler construction. As we have noted in Lecture 0, it has become clear that the compilation process can be based upon a useful separation of related concerns, i.e. the process can be divided into distinct stages each of which results in a well-defined output�. For historical reasons the source description (or source string) supplied to a compiler is often referred to as “source code”� and the separate stages of compilation are usually referred to variously as lexical analysis (or scanning or itemisation), syntax analysis (or parsing), semantic analysis (or checking), code (or report) generation and (code) optimisation. 





This lecture will describe the various stages of the compilation process and their interrelationships in more detail. 





2.1 Lexical Analysis





Lexical analysis is concerned with the identification of lexical tokens (or lexemes) from an input stream of characters. Lexical analysis of the string shown below would result in the following lexemes being recognised in the order indicated by the arrows:-





PROCEDURE example(VAR i: integer; t: some_type);





�





Typically, a simple data structure is used by a compiler to represent each lexeme, for example, as a mapping from a lexeme_kind to a value which represents an instance of that lexeme kind. The value associated with an instance of a given lexeme depends upon the kind of lexeme, for example, an ‘identifier lexeme’ could be associated (mapped) to a value, e.g. a unique natural number.





Example:-





We could define a type for a data structure used in the scheme described above in a language with a Pascal-like syntax as:-





TYPE lexeme_kind    = (program_sym, identifier_sym, begin_sym, end_sym, ...);





     lexeme         = CASE kind: lexeme_kind OF


                        program_sym   : (* has no associated value *);


                        identifier_sym: (id_code: natural);


                        .


                        number_sym    : (value  : integer);


                        .


                        .


                        string_sym    : (chars  : string)


                      END;








2.2 Syntax Analysis (Parsing)





The parsing process is used to determine the structure of a string written in a high-level programming language in terms of the non-terminals in the grammar defining that language. The semantic analyser (see next section) then uses this information to build a symbol table containing declaration information and to decide which semantic rules to apply to generate instructions (or code).





�





Many different compiler implementations can be derived from this basic model, including:-





- 	Single-pass





  	Parser calls operations in semantic analyser every time it recognises a complete non-	terminal





- 	Two-pass





	Parser builds a complete parse-tree (or analysis record) which is subsequently processed 	by the semantic analyser





- 	Parallel compilers





	Syntax and semantic analysis are carried out by separate processors with the syntax 	analyser sending messages about non-terminals to the semantic analyser.





The complexity of the parsing process depends on the complexity of the grammar defining the language to be compiled�. Most modern high-level programming languages are deliberately specified by grammars which are “easy” to parse. As we have already seen, a common property of grammars used to specify programming languages is called the “single symbol look-ahead” property. Grammars with this property are similar to those which fall into the mathematical class of grammars called LL(1) but with the ‘lambda-free’ constraint removed, i.e. it is possible to parse a string from a language defined by such a grammar and to determine which non-terminal comes next by looking only at the next terminal symbol�. 





The ease with which meaningful error messages� can be generated is also related directly to the complexity of the language’s grammar, and likewise, the ease with which the parsing process can continue to detect further errors after a given error is detected and reported�.





Lexical analysis can be performed “incrementally” during the syntax analysis stage, i.e. the syntax analyser can “ask” the lexical analyser to read the next lexeme every time it successfully recognises a terminal symbol in the grammar. Thus, once a source description has been reduced to a sequence of lexemes, the primary syntax analysis task can commence with the parser used to carry out this process operating in a “top-down” manner, e.g. by recursive descent, or alternatively in a “bottom-up” manner. 





Examples of top-down and bottom up parsing styles:- 





(Note: Rules of the form:-





<p>::=x


<p>::=y  





are equivalent to:- 





<p>::= x | y


)





rule 1: <expr> ::= <term> + <exp>


rule 2: <exp>  ::= <term>


rule 3: <term> ::= a


rule 4: <term> ::= b





To parse <s>::=a + b + a top-down with respect to <expr>





Hypothesis:  <s>::=<expr>





substituting in s using rule 1 gives <s> ::= <term> + <expr>


substituting in s using rule 3 gives <s> ::= a + <expr>


substituting in s using rule 1 gives <s> ::= a + <term> + <expr>


substituting in s using rule 4 gives <s> ::= a + b + <expr>


substituting in s using rule 2 gives <s> ::= a + b + <term>


substituting in s using rule 3 gives <s> ::= a + b + a





QED





To parse <s>::=a + b + a bottom-up with respect to <expr>





substituting in s using rule 3 gives <s> ::= <term> + b + a


substituting in s using rule 4 gives <s> ::= <term> + <term> + a


substituting in s using rule 3 gives <s> ::= <term> + <term> + <term>


substituting in s using rule 2 gives <s> ::= <term> + <term> + <expr>


substituting in s using rule 1 gives <s> ::= <term> + <expr>


substituting in s using rule 1 gives <s> ::= <expr>





QED





An alternative to ‘encoding’ a parser for a specific language is to use a so-called ‘table-driven’ parser. This consists of a ‘general-purpose’ parser which can be provided with a ‘table’ containing the grammar rules for a given language. The output from such a parser may either be a complete parse tree or a sequence of ‘messages’ to a semantic analyser every time a non-terminal is recognised.








2.3 Semantic Analysis





Semantic analysis is concerned with determining if the ‘meaning’ associated with some string written in a programming language is valid. The “meaning” is bound to the definition of the language, thus, for example, where a language enforces definition before use, a symbol which is used before it is defined literally has no meaning. Likewise, the notion of strong typing� can be used to ensure that only semantically meaningful operations are applied to particular data objects. 





As stated in an earlier lecture, the formal specification of programming language semantics is less-well developed than that of lexical and syntactic specification. However, ultimately some means of capturing formally the definition of a language’s semantics may be required, for example, where a language is to be used to develop so-called ‘safety-critical applications’.  





�
2.4 Code Generation





In the same way that syntax and semantic analysis stages must determine without error for any string in a given language if it is or is not syntactically and semantically valid,  the generation of ‘code’ (i.e. an executable representation) for some ‘target machine’ is a process that must also be free of any error. Coupled with this constraint is the need for the resulting representation to be ‘efficient’. The complexity associated with these combined constraints has led to approaches to so-called ‘code generation’ which seek to abstract away from the characteristics of ‘actual’ machines by generating ‘code’ for so-called ‘hypothetical’ (or virtual) machines.  





An advantage of using a virtual rather than an actual machine is that compilers can be developed for several different languages each of which produce a representation for that single virtual machine and, hence, only a single ‘code-generator’ is needed to translate virtual machine instructions into actual machine instructions. Similarly, the resulting code-generator (or compiler back-end) is the only component which must be rewritten if the languages are to be supported by a different actual machine.     





2.5 Optimisation





This phase may or may not be supported by some compilers, and in others it may be ‘optional’, i.e. it can be switched on (or off) as required. There are undoubtedly savings to be made in the ‘code’ produced by general-purpose code-generation techniques, not least, in the number of actual instructions and also in the number of times given instructions are to be executed. 





Example:-





The instructions (code) generated for a single register (accumulator) virtual machine might take the form:-





a:= b * c;		acc = b		load register with value in memory location b


e:= a / f;		acc * c		multiply value in register by value in memory location c 


			acc => a	store value in register in memory location a 


			acc = a	load register with value in memory location a 


			acc / f		divide value in register with value in memory location f 


			acc => e	store value in register in memory location e








A code optimiser could recognise the redundancy of the emboldened instruction and remove it from the sequence of instructions. This simple example demonstrates how more efficient use can be made of registers, other optimisations include:-





a) 	removing multiple evaluations of the same expression


b) 	removing invariant code from the inside to the outside of a loop


c) 	making effective use of the machines instruction set, e.g. using ‘special’ instructions for 	reducing loop overheads and procedure calls.


d) 	inserting ‘in-line’ code for small procedures and functions


e) 	‘unrolling’ loops, i.e. repeating the code for a loop several times to reduce the overhead of 	loop control 





Further, more complex, optimisations are also possible, for example, restructuring the parse tree after semantic checking. 





�
2.6 Anatomy of a Compiler





The dataflow diagram below shows the relationship between the various phases in the compilation process and their associated inputs and outputs.





�





For obvious reasons first three phases (lexical analysis, syntax analysis and semantic analysis) are collectively referred to as the analysis stage, whilst the last two phases (code generation and code optimisation) are collectively referred to as the synthesis stage.





The data store labelled name_list (symbol table) and properties holds a list containing all of the identifiers used in a compilation unit (program, module, etc) together with additional information, for example, a variable will have associated with it a type which enables sufficient memory to be allocated to that variable during code generation.





When a compiler is implemented, the phases in the diagram above can be combined in variety of different ways. The notion of a pass, i.e. a complete traversal of a source description, parse tree representation or executable representation is central to a given compilers organisation, for example, a given phase of compilation could be associated with a distinct pass. Alternatively, all compilation phases could be associated with a single pass. The second organisation is associated with Pascal compilers (and the like) where compilation is driven by the parser, i.e. the parser calls the lexical analyser whenever a new lexeme is required, when the parser has completed the recognition of a grammatical construct, the semantic and code generation procedures are called. Such an scheme is termed syntax-directed translation.





The semantics of a language can influence directly the number of passes needed by a given phase, for example, in Algol-68 identifiers must be declared but not necessarily before they are used! This results in the need for two separate semantic analysis passes, first to identify all of the declarations and secondly to type-check their use. Even where a one-pass scheme has been used, there may need to be several passes of the code optimiser to implement ‘global’ code optimisations.   





2.7 Interpretation ‘vs’ Execution of Compiled Components





So-called ‘object code’ generated by a compiler can comprise actual machine instructions which are executed directly by hardware at run-time. Alternatively a compiler may generate intermediate code which is interpreted by an interpreter. This alternative scheme has several potential advantages:-





a)	Interpretive codes can be designed which simplify the translation of a programming 	language into an intermediate code.





b) 	Interpretive codes can also be designed so that resulting object-code sequences are 	collectively more compact than their equivalent collection of machine-code sequences. 





c) 	It is easier to organise sophisticated run-time diagnostic facilities





d)	Developing support for a new language and porting an existing implementation to a new 	machine is easier.





e) 	Interactive and incremental compilation is possible.





f) 	Interpretation of some languages has a very small overhead compared to compilation, e.g. 	LISP, Prolog, SmallTalk, etc. 





�
2.8 Object Code Formats





A compile-and-execute (or compile-and-go) approach to compilation results in an executable representation (or object-code) suitable for storage in ‘main’ memory of some ‘target’ machine. However, the availability of secondary, i.e. file-based, storage has led to such descriptions being held in files after compilation and subsequently executed by loading into ‘main’ memory.





An ‘object-code’ program contains instructions and data, the ‘code’ is usually termed pure and relocatable, i.e. it does not change during execution and may only be ‘used’ in the sense that access rights to it are limited, i.e. it can only be ‘obeyed’ or read. In a time-sharing system such ‘object-code’ has the potential to be shared by two or more processes and its relocatability means that it can be loaded (or relocated) anywhere in ‘main memory and executed without modification.





 ‘Object-code’ may be complete in the sense that it will execute on ‘bare’ hardware, or it may depend upon the existence of other software for its execution. Incomplete (or semi-compiled) ‘object-code’ can be augmented with the services it requires, e.g. operating system and language specific run-time support procedures including input-output support, heap support and mathematical function support. Collectively, this combination of hardware and software to which the compiler targets its ‘object-code’ is termed a virtual machine, and where ‘object-programs’ are in interpretive-code form then the complete virtual machine interface is provided by software.





Most current compilation systems provide independent compilation, i.e. software components (modules, programs, sub-routines, procedures etc) may be compiled in isolation. One major benefit of such support is the encapsulation of changes within a component’s boundaries, i.e. when developing larger-scale software systems changes to a given component will only require that component to be recompiled. However, the object-code generated during independent compilation is incomplete in the sense that it has references to other components (procedures, data, labels, etc) whose definition is contained in other module(s). The output from a compiler which supports independent compilation comprises:-





a) 	Code with references


b) 	A list of details relating to unresolved references (so called ‘imports’)


c) 	A list of details relating to procedures, labels and data in the module being complied which 	may themselves be referenced from other modules (so called ‘exports’)





A linker resolves the references between independently compiled components and generates a complete ‘object-code’ which is usually stored in a file. Another advantage of independent compilation is the potential for components to be written in different languages, e.g. in a high-level language and in an assembly language. The binding mechanism, i.e. the association between the name and a storage location produced by a linker is ‘crude’ in the sense that it does not support type checking of data and procedures where they have independently compiled.





In some compilation systems, independent compilation is combined with full type-checking of shared procedures and data. Typically such type-checking is achieved by the generation of a file for each compilation component which gives details in terms of high-level language constructs of the ‘exports’ of a component being compiled. The information in the generated file is then used by the compiler when compiling other modules for type-checking the ‘imports’ to those modules. Such a scheme is termed separate compilation�.





Another possible format for the ‘object-code’ generated by a compiler is an assembly language representation which is translated into a directly executable (or ‘machine-code’) equivalent by an assembler.  





   





2.9 Compiler Construction





And so, finally to the actual construction of a compiler ! 





Perhaps the first, and most fundamental question, to be answered is ‘what language will the compiler be written in ?’� Secondly, from a purely practical viewpoint, one has to consider whether to use software tools� to generate components of the compiler in the hope of reducing development time and costs. Today, most compilers are written in a high-level language because such a representation is more easily engineered, i.e. easier to write, reason about and hence maintain and potentially re-use in part.





Where a compiler has been written in the language that it compiles, then a ‘new’ version of the compiler can be produced by compiling a source description of the ‘new’ compiler using the ‘old’ compiler to generate the ‘new’ compiler!





Of course, the ‘first’ compiler must be generated somehow! Where an assembler is available for the machine that the compiler is being developed for, then rather than writing a complete compiler in assembly language (a rather time-consuming and error-prone activity!) a subset of the language for which a compiler is needed can be supported by a much smaller assembly language implementation. Such an initial ‘sub-language’ compiler (written entirely in some assembly language) can then be used in the generation of a ‘suite’ of compilers each of which leads to the desired ‘full’ language compiler written in the ‘full’ language (phew!).





�





�
Such an approach also has its pitfalls, not least because the ‘object-code’ program from steps (4) and (5) must be identical, i.e. if there is an error (a ‘bug’, say, in the source description) of the recognition phase of the ‘full’ language version of the compiler then it will cause compilation errors in step (4) whilst a ‘bug’ in the code generation phase will not be identifiable until step (5) at which point the compiler will either give compile-time errors or, even worse, the ‘object-code’ of steps (4) and (5) will be dissimilar.





2.10 Summary and Conclusions





The systematic construction of a compiler (with or without the support of software tools) can be based upon a useful separation of concerns, i.e. concerns relating to syntax analysis (or parsing) from concerns relating to semantic analysis, and concerns relating to code generation. The resulting representations generated by a given compiler can be the product of a variety of alternative organisations within that compiler of the various phases of compilation, and also a variety of different kinds of ‘object-code’ formats. Developing the ‘first’ compiler for a language is inevitably problematic although subsequent versions may not be so, especially if the compiler is written (largely) in the same language as that it is intended to compile!�   








Chris Harrison, September 1997.








�
Questions:-





1. 	List all of the tokens (lexemes) of Pascal or ‘C’





2. 	Explain what is meant by the terms pass and phase in the context of compilation.





3. 	Construct a parse tree for z:= x * y + v * u / w





4. 	Write a ‘code fragment’ which is syntactically correct by semantically in error.





5. 	Why is an ‘intermediate’ form of code sometimes generated by a compiler ?





6. 	What are the advantages and disadvantages of compiling into an intermediate code and then 	interpreting such a representation ?





7. 	Explain what is meant by the terms independent compilation and separate compilation and 	state whether one is better (or worse) than the other.





8. 	What advantage(s) does a separate lexical analysis phase give ?





9. 	The ‘name-list’ or symbol table contains a list of all of the user-defined identifiers in a source 	description. Why is it needed and what kind of information should be stored for the 	following:-





i) 	Variables


ii) 	User-defined types


iii) 	Functions and procedures





10. Define the following terms:-





i) 	Intermediate code


ii) 	Relocatable code


iii) 	Interpretation


iv) 	Interpreted code


v) 	One-pass language


vi) 	Complete code


vii) Augmented code


� Such a separation is, of course, the basis of any systematic engineering technique!.





� The term code implies encryption and the need for a key to decrypt a given message and stems from early programming “languages” which provided very limited abstraction over the facilities available directly from computing machines. 





� It is difficult to over-emphasise the importance of designing compact and regularly structured languages using fundamental and general principles such as the type completeness principle, the correspondence principle, etc.   





� The efficiency of a parser is related to its ability to ‘choose’ substitution rules from the grammar in an effective order. If rules are selected in the ‘wrong’ order a parser may eventually have to “back track” and try a number of different sequences of substitutions before it reaches its goal. The advantages of top down recursive descent parsers when used with languages which have a single look-ahead property are twofold:-





a) Their structure can be deduced mechanically from any suitable language definition.





b) They can parse any string in the language without backtracking while reading the source string sequentially one terminal symbol at a time.





� The term “meaningful” is used here to denote a timely, concise and precise description of the location in the source description of the error and the syntactic constraint which has been violated. 





� So-called “error recovery” is made more problematic by poorly designed languages because the complexity associated with their structure makes the recovery algorithm more complex. Where such complexity cannot be effectively managed, it may be necessary to “ignore” portions of the intervening source description until some “valid” lexeme is encountered. The “ignored” portion may then cause related problems when it is referred to by later portions of the source description!     


� Arguably (and in the author’s opinion justifiably so!) the single greatest step forward in programming language design to date.


� FORTRAN, BASIC, C and COBOL systems typically provide independent compilation, whereas Ada, Modula- and modular-Pascal’s provide separate compilation. 


� Indeed, one means of determining how ‘good’ a programming language ‘is’ is to determine how well it supports the systematic construction or engineering of a compiler for itself !





� Most commonly, for example, LEX and YACC. 


� This same property holds true for a wide variety of software tools whose very nature leads to a self-constructing initial execution. An ADS[TYE86] is an example of a software tool whose initial ‘store’ (essentially a value of the type ‘type’ (the preceding parts of this sentence do not contain a typing error!) has to be ‘hand-written’ and then used to ‘bootstrap’ the system for the first time only. All subsequent executions of the same system can rely on the representation stored by the ADS after it’s intial ‘booting’ (I only hope Tony would be proud of me for being able to understand this!)





[TYE86] “A Prototype ADS”, PhD Thesis, Department of Computation, UMIST, 1986.  
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