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Lecture 3. Lexical Analysis



Lexical analysis is an example of a process which has a variety of different applications, in particular, where some means of recognising patterns of symbols must be automated, e.g. during the initial stages of compilation(as we are considering here), during editing of text where ‘searching’ must be done in some context specified by a pattern, in (now rather dated) command language interfaces where a pattern specifies the arguments upon which a command operates, during ‘searches’ of large collections of (relatively simply structured) values, e.g. in databases, dictionaries and thesauruses, and also during the kinds of ‘string manipulations’ that are associated with so-called ‘natural language processing systems’.



The main function of a lexical analyser (or scanner) is to ‘read’ the source description (text) of a software component, character-by-character, and to ‘group’ individual characters into the lexemes (or tokens) of the language. Individual lexemes (tokens) may represent reserved (or key) words, identifiers, numbers, delimiters and separators(an important distinction!), arithmetic operators etc. Once recognised, individual lexemes are ‘encoded’ to indicate their kind and, where necessary, their value, typically by creating a value in a data structure (symbol-table) which, as we have seen, implements a mapping.



When considerable efforts have been made to ensure that a language’s design is regular�, this usually results in a language which is (relatively) compact (in terms of the number of syntactic components) and it is therefore feasible to construct a lexical analyser ‘by-hand’ in an ad-hoc (as needed) manner. Where this is not the case it may be necessary to use some form of ‘automated support’ to generate a lexical analyser. So-called ‘lexical-analyser generator tools’ accept a formal description of the lexemes of a language (which usually takes the form of regular expressions) and which generates a lexical analyser component (module) for a compiler of that language. 





3.1 The Rôle of Lexical Analysis



Although a lexical analyser will typically be a separate component of some larger (hopefully modular�) compiler, the form of its interface will vary with the kind of support provided for encapsulation and information hiding by the high-level language used to write the compiler. For a language with a regular structure, a lexical analyser can be reduced as a single procedure which simply ‘returns’ the ‘next’ lexeme from an input steam of characters. Indeed, in such an organisation the entire compilation process is driven by the as it ‘calls’ the lexical analyser for the next lexeme each time it (the parser) requires a lexeme as it(the parser) parses a grammatical construct and then ‘calls’ on code generation routines to produce the ‘object-code’ corresponding to that construct. Such a scheme is termed syntax directed translation.



For a simplified language with a Pascal-like syntax and semantics, e.g. the ‘Newt’ language from the exercises in Lecture 1, the lexical analyser can indeed be a simple procedure whose ‘interface’ is shown below:-



PROCEDURE get_lexeme;



This procedure ‘reads’ the input stream of characters one-at-a-time and, when a lexeme has been recognised, updates some ‘globally declared’ variable, e.g.



VAR l: lexeme;  



Unfortunately, where languages were developed before much was known about how to ensure a regular design, e.g. FORTRAN, COBOL, etc, lexical analysis is performed a-line-at-a-time (actually a statement at a time as a single line can extend over more than one line of text as I recall), whilst for other languages a whole program is subject to lexical analysis in a single pass and the output from the lexical analyser is typically stored in a file containing the recognised lexemes and their associated values (where applicable). As a result, the organisation of a given lexical analyser depends, at least in part, upon the number of passes that the compiler makes through the source description.



In addition to simply converting a source description from a sequence of characters into lexemes from some language, other tasks may be performed by the lexical analyser, including:-



a) Recognising reserved words

b) Adding names of identifiers to name and property lists

c) Removing so-called ‘white-space’

d) Production of a source listing

e) Removal of comments

f) Providing error reporting facilities for other phases of a compiler

g) Implementing compiler directives, e.g. macro-substitution



The advantages of implementing a lexical analyser as a separate software component (module) are those same advantages associated with the development of software systems as compositions of named (separately compilable) components with well-defined interfaces, i.e.:-



a) Simplification of the resulting design - it enables a useful separation of concerns 

b) It has the potential to improve efficiency

c) It should result in greater ‘portability’ or component re-use



�3.2 Practical Considerations 



The very need for a lexical analyser to process a source description one character at a time has the potential to ‘slow down’ the whole compilation process. To ‘speed up’ this activity it may be necessary to use techniques to make such processing more ‘efficient’, e.g. buffering techniques, or to exploit properties of other components of a language implementation, e.g. support for very fast string processing. In addition, the lexical analyser must be space efficient. As we have seen in Lecture 2, in a compiler for a language with a Pascal-like syntax and semantics, the kind of lexeme can be realised efficiently as an enumeration of literal constants, e.g:-



TYPE lexeme_kind    = (program_sym, identifier_sym, begin_sym, end_sym, ...);



Where a lexeme has an associated value, e.g. constants, identifiers (and in other kinds of language further additional constructs), some means of representing that value must be realised, e.g.:-



     lexeme         = CASE kind: lexeme_kind OF

                        program_sym   : (* has no associated value *);

                        identifier_sym: (id_code: natural);

                        .

                        number_sym    : (value  : integer);

                        .

                        .

                        string_sym    : (chars  : string)

                      END;



The ‘bulk’ of the text of a program (in languages such as Pascal, ‘C’ etc) is composed of reserved words and identifiers, therefore the lexical analyser must be capable of efficiently distinguishing between (and in the case of identifiers representing associated values of) these two kinds of symbol. Again, a compact language will enable a relatively simple data structure to support this process, for example, the individual characters in the source description can be collected together to form a value of some simple type, e.g. a string, an ARRAY of chars. The resulting value is then it is checked (e.g. by indexing into a table based upon it’s length, or by a set comparison) against reserved words (and possibly pre-defined identifiers) in a suitably initialised data structure. Where a string of characters represents a user-defined identifier it is stored in the symbol table.



3.3 Recognition of Lexemes



When ad-hoc construction of a lexical analyser is inappropriate, the writing of procedures to recognise lexemes may be aided by drawing state transition diagrams for the various kinds of lexeme to be recognised. Such a diagram shows the possible ‘paths’ taken by the ‘scanner’ as it reads the source description (character by character) and is composed of states connected by transitions denoted by arcs.



Each arc is labelled by the symbol of the alphabet, i.e. the characters, which cause a change in state. A single start state may be associated with one or more end states (denoted by double circles) in such a diagram. A diagram (more properly the automaton it represents) is said to be deterministic if each transition from a given state has a unique label, and a ‘comment’ by the end state(s) indicates the value of the lexeme.



Where the process of lexical analysis is made more difficult, e.g. in languages which are not LL1, the lexical analysis and syntax analysis stages can become somewhat confused! For example, in the transition diagram below, if a source representation contains a ‘<‘ token then it is only after the next character has been read and found NOT to be an ‘=‘ or ‘>‘ symbol, that the lexical analyser ‘knows’ that the token WAS a less-than! Typically, in such an analyser, a ‘special function’ (yuk!) is used to return the ‘next’ character without moving some ‘pointer’ in the buffer containing the part of the source which is being analysed. If such a routine is not used (as in the example below) some means of ‘unreading’ the character must be realised (double yuk!).



�



Reserved (or key) words can be usefully treated as ‘identifiers’ as suggested earlier and then recognised using the same transition diagram (saving many unhappy hours of redundant diagram writing!). When the accepting state is reached, associated ‘semantic actions’ can be taken to determine if the identifier was (or was not) a reserved word. 



�



A lexical analyser constructed in this manner would have a state transition diagram for most of the different kinds of token and would record the initial position in the source being processed and try each diagram in turn until a match for the input was found or, if no such match was found, would indicate a lexical error. In such a scheme, the order in which the diagrams are matched is significant, i.e. for lexemes which have the same initial character, e.g. ‘:’ and ‘:=‘, those with longer prefixes can be checked first, as can lexemes which are special cases of others, e.g. reserved words before identifiers (if they are being recognised separately).  



A corresponding recognition procedure in a language with a Pascal-like syntax and semantics is shown below:-



PROCEDURE rec_relational_operator(VAR l: lexeme_kind;

                                  value: lexeme

                                 );

  ....



    PROCEDURE process_state_zero(...) 

    BEGIN

      IF ch = lss_sym THEN state:=1

      ELSE

      IF ch = eq_sym THEN

      BEGIN

        state:=5;

        l:=relation_sym;

        found:=true;

        finishes:true

      END

      ELSE

      IF ch = gt_sym THEN state:=6

      ELSE found:=true;

      finished:=false

    END;



    PROCEDURE process_state_one(...);

    BEGIN

    ...

    END;�



BEGIN

  state:=0;

  found:=false;

  finished:=false;

  WHILE NOT finished DO

  BEGIN

    get_char(ch);

    CASE state OF

      0: process_state_zero(...);

      1: process_state_one (...)

    END

  END

END;



In this example, the variable used to hold the lexeme value is assumed to be of an enumerated type whose literals include eq_sym, lss_sym etc. Comments� and so-called ‘white space’ characters can also be described by transition diagrams but, on recognition, their lexemes are not supplied to the syntax analyser.



3.4 The Automated Construction of Lexical Analysers



Automated support for constructing a lexical analyser typically takes the form of a software tool whose input is a formal description of each lexeme (from such language) and which transforms this specification automatically into some form of ‘internal’ tabular representation of the corresponding formal description, and which outputs a software component which takes the form of a lexical analyser written in some programming language.



As there is only a one-to-one correspondence between regular expressions and finite state automata (see formal language theory!), it should be a purely mechanical task to specify lexemes as regular expressions and to derive a finite state automaton which will recognise those lexemes, i.e. if the lexemes of a language are specified as regular expressions then that specification can be processed by a software tool which converts the specification into finite state automata which recognises those lexemes. Whilst the underlying theoretical notions are important because they have wide-ranging applications, scanner generators based on such notions, e.g. Lex, are worthy of some passing interest.



3.4.1 Finite State Automata



Finite state automata (FSA) constructed to recognise the lexemes of a language consist of a set of language specific transition tables and a general simulation algorithm. The operation of the automata can be represented by a state diagram, e.g. the diagram for relational operators shown earlier in this lecture note. The transition table for that automaton is shown below�:-



	  TRANSITION TABLE

         ALPHABET SYMBOLS

            <   >   =

STATES 0    1   5   4

       1        3   2

       2

       3

       4

       5            7

       6



More generally, automata can be described by a 5-tuple:-



M = (K, S, d, S, F)



where K is the set of states, S is the input alphabet, d is the set of transitions, S is the start state and F is the set of final (or accepting) states. Thus, for the example above:



K = {0, 1, 2, 3, 4, 5, 6}

S = {<, =, >}

d = set of transitions given in transition table

S = 0 

F = {1, 2, 3, 4, 5, 6, 7}



This particular example is a deterministic finite state automaton (DFA) as it may only ever be in a single state, i.e. no state more than a single transition which occurs for the same input symbol. The execution of a DFA is relatively simple to simulate in software, e.g.



dfa_state:=start_state;

WHILE NOT end_of_input DO

BEGIN

  read(ch);

  dfa_state:=transition_table[dfa_state, ch]

END;

recognised:=dfa_state IN dfa_finished_states



For lexical analysis purposes, DFA execution needs to be slightly different from the ‘general’ description given above, i.e. when recognition of symbols ceases such that the next state switch would be an error, a lexeme HAS been recognised IF the current state is a finished state. 



A regular expression can be translated into a DFA that recognises, as valid lexemes, the set of strings denoted by a regular expression - indeed it is this very translation which is performed by a scanner generator (software) tool.



3.5 Scanner Operation



A scanner generator (software) tool ‘constructs’ an FSA from some collection of regular expressions which describe the lexemes (of some language to be analysed) and ‘adds’ the general algorithm shown in the last section to simulate the automaton. To do this, the (software) tool must derive the transition table from the regular expressions (which describe the lexemes) and this process is made more simple if, initially, a non-deterministic finite automaton (NFA) is derived (from the regular expressions) and then transformed into an equivalent deterministic finite automaton which recognises the same regular set, i.e. the same lexemes.



In the diagram below, one cause of the automaton’s non-determinism is a set of possible states in one of the transition table entries, i.e. when the automaton is in the state 0 and receives an ‘a’ then it may, (non-deterministically) result in the automaton being the either of the states 0 or 1. The practical implication of such a situation is that all of the possible transitions (in this case, admittedly, only two) must be attempted before a given string can be shown to be ‘unrecognisable’, and this will involve backtracking from ‘failed’ transitions�.



�





Consider, next, a ‘two-step’ approach involving two ‘conversions’ from regular expressions into DFA’s via NFA’s�.



Regular Expression

	ﬂ 

Non-deterministic

Finite Automaton 

	ﬂ

Deterministic

Finite Automaton

(in terms of transition table) 

	ﬂ

DFA simulation using

transition table



3.6 Constructing Finite State Automata from Regular Expressions



Recall, first, how regular expressions are constructed from combinations of simpler regular expressions, for example, an atomic (trivial) regular expression denoted by the alphabet symbol a (where ‘a’ is a character in S ) and also  denoted by empty symbol  e, using the (), *, | and concatenation operators.



The construction of an NFA uses the same algorithmic notions and has an approach based on Thompson’s Construction, i.e. NFA’s of the simpler RE’s are combined together to form an NFA for a composite RE. An NFA’s is constructed from the alphabet and operator symbols in a corresponding regular expression. The NFA’s for an alphabet symbol and the empty symbol are shown below, for the operators the NFA’s of the involved symbols are combined to form a single NFA according to the rules summarised below:-



�



Note:-



Each symbol or operator generates at most two further states, thus, a RE with N symbols and operators produces at most 2N states in it’s NFA. An example of NFA construction is shown below:�





The diagram above demonstrates how changes in state can be achieved without any input, for example, state 1 is e-reachable from state 6. When recognising the string bbbabb the machine will move into state 4 (with empty string being ‘implicitly’ input and causing the transitions from states 0 to 1, and 1 to 4), then recognise a single ‘b’ and move into state 5, which is implicitly followed by the input of further empty strings , moving the machine to state 4 one more. This sequence of state changes will be repeated for each of the ‘b’s until, after the last ‘b’ has been input, the implied empty string input’s will move the machine into state 6 and then state 7 (yet another example of non-determinism!).



Note:-



On first encounter, the use of this approach may seem rather unusual! The key to accepting the above form of definition is to think about the very nature of an e-transition, i.e. it is simply another manifestation of non-determinism and a state is e-reachable from itself. It is during conversion from an NFA to a DFA that e-transitions  are eliminated.



3.6.1 Construction of an Equivalent DFA for an NFA



Recall, that a (software) tool is to be constructed which, when supplied with an RE description (of the lexemes in a programming language) will automatically produce the software for a lexical analyser for that language! This ‘scanner’ will embody a DFA which is capable of recognising the lexemes. 



The tool used to generate the scanner uses the RE description of the lexemes to produce, first, an NFA recogniser and then transforms this into an equivalent DFA recogniser has is a more efficient form.



During NFA simulation, the machine state is a set of states with (generally) more than one member. In an equivalent DFA this set of states corresponds to a single DFA state. Using the example from the previous section, after ‘aa’ has been recognised the NFA machine is in the state (set) {3, 6, 1, 2, 4, 7, 8} and this corresponds to a single state in an equivalent DFA.



An algorithm for constructing an equivalent DFA from an NFA uses the functions shown below:-



e-closure (s) 	set of NFA states reachable from state ‘s’ on e transitions alone, 

		e.g. e-closure (3)  = {3, 6, 7, 1, 2, 4}



 

e-closure (T) 	set of NFA states reachable from states in ‘T’ on e transitions alone, 

		e.g. e-closure ({3, 5})  = {3, 5, 6, 7, 1, 2, 4}



move(T, a)	set of NFA states reachable by states in T by transitions

		for symbol a alone,

		e.g. move({2, 7}, a) = {3, 8}



Note that e-closure (move(T, a))  gives the set of states reachable from states in T by transitions on a followed by e-moves. This is used in the construction algorithm which constructs a DFA from an NFA by enumerating the states (each DFA state representing a set of NFA states) that the NFA can be in.



1. Calculate the initial NFA state (the set of states the NFA could be in prior to receiving any input)

	

	e-closure (state 0) = {0, 1, 2, 4, 7}



	This set corresponds to the start state of an equivalent DFA denoted by, say, ‘A”.



2. Emulate the action of the NFA for each possible input symbol from the initial state.



	If this NFA accepts ’a’ from its initial state the NFA state becomes:-



	move(A, a) = move({0, 1, 2, 4, 7}, a) = {3, 8}

	e-closure ({3, 8}) = {3, 6, 7, 1, 2, 4}



    	Accepting ‘b’ from the initial NFA state gives:-



	move(A, b) = move({0, 1, 2, 4, 7}, a) = {5}

	e-closure ({5}) = {5, 6, 7, 1, 2, 4}



The set of NFA states which result from applying these operations represent the DFA states which are reached from the DFA state A on recognising an ‘a’ and an ‘ab’. Neither of these states yet exist in the DFA so two new states ‘B’ and ‘C’ where B = {3, 6, 7, 1, 2, 4, 8} and C = {5, 6, 7, 1, 2, 4} must be added to the DFA and the DFA transition table row for ‘A’ completed:-



   a        b

A  B        C

B  ?        ?



The action on reading an input symbol for the two new NFA states is then emulated. This is similar to the action above, except that for each move after reading an input symbol, but before creating an equivalent DFA state, it is necessary to check the automaton to determine if a DFA state already exists with the same set of NFA states. 



The NFA action on reading input symbols for the latest two states, i.e. ‘B’ and ‘C’ has the following moves:-



move(B, a) = move({3, 6, 7, 1, 2, 4, 8}, a) = {3, 8}

e-closure ({3, 8}) = {3, 6, 7, 1, 2, 4, 8} = B



Thus, the new NFA state moved to is the same as the previous state (equivalent to DFA ‘B’) and there is no need to create a ‘new’ DFA state!



move(B, b) = move({3, 6, 7, 1, 2, 4, 8}, b) = {5, 9}

e-closure ({5, 9}) = {5, 6, 7, 1, 2, 4, 9}



For this a new DFA state ‘D’ is needed:-



move(D, a) = move({5, 6, 7, 1, 2, 4, 9}, a) = {3, 8}

e-closure ({3, 8}) = {3, 6, 7, 1, 2, 4, 8} 



This is again DFA state ‘B’



move(D, b) = move({5, 6, 7, 1, 2, 4, 9}, b) = {5, 10}

e-closure ({5, 10}) = {5, 6, 7, 1, 2, 4} 



This is a new DFA state ‘E’ and the effect of moves continues until all NFA states have been enumerated at which point the equivalent DFA and its transition table is as shown below:-



�







A skeleton fragment from a program written in a language with a Pascal-like syntax which realises this algorithm is shown below:-



This procedure, known as a sub-set construction algorithm, does not generate ‘optimal’ DFA’s., i.e. those with a minimal number of states. However, there are methods for optimising the DFA’s obtained from this algorithm which are beyond the scope of this course!



Summary and Conclusions.



The primary function of a lexical analyser is to ‘read’ a source description one character at a time and to group the characters into lexemes in such a way that the kind of lexeme and any associated value can be reported back to a parser - a seemingly trivial task! The potential advantages of using automated support (software tools) for the production of components of a compiler, e.g. a lexical analyser, must be traded off against the costs involved in generating a description of the input to such a tool. Indeed, we might begin to question the whole premise (implicit thus far in this lecture course) than the source description for a program takes the form of a string written in a programming language. In other words - the case against the textual representation of programs (and larger scale software systems) is very strong!  



Chris Harrison, October 1997�Appendix 1. Scanner Generators - Example.



To generate a lexical analyser for a programming language ‘L’ using a ‘scanner-generator’ we need to specify the structure of the language’s lexemes as regular expressions. This specification is then the input to the ‘scanner-generator’ and its output is a ‘table-driven’ lexical analyser for the language written in some high-level programming language (not necessarily the same as the language as ‘L’). In practice, a number of practical constraints make the simplicity implied by the previous statements rather difficult to justify, see Fischer and LeBlanc� for more detail.



A1.1 Lex�. 



Lex is a lexical analyser generator tool whose ‘popularity’ is due, at least in part, to the widespread use of UNIX under which it ‘runs’. It’s input is indeed a specification of a language’s lexemes in terms of regular expressions, and it outputs a lexical analyser written in ‘C’, i.e. a ‘scanner’ which embodies a finite state machine (as described in this lecture) and a ‘C’ program which ‘drives’ the machine.



Input to Lex (in common with most ‘exchanges of information’ in UNIX) takes the form of a text file with three component parts separated by %% symbols, i.e.



declarations (variables, constants[lexeme encodings] and regular definitions)

%%

RE defining lexemes and associated (semantic) actions

%%

auxiliary procedures



The RE’s defining lexemes and associated (semantic) action takes the form:-



r1{action 1}

r2{action 2}

r3{action 3}

.

.

rn{action n}



where r1..rn are RE’s specifying the lexemes of the language and actioni specifies what must be done by the lexical analyser if ri is recognised. Actions are program fragments - usually (but not necessarily) written in ‘C’. Auxilliary procedures conmprise any ‘special purpose’ procedures or functions required by actions 1..n



The input file is the source description processed by a ‘lex compiler’ whose output is a lexical analyser usually written in ‘C’. The output from the ‘lex compiler’ can be compiled, e.g. by a ‘C’ compiler, and used by other components of a compiler for the language to be processed. 



A lexical analyser constructed using Lex is ‘called’ by a parser and is responsible for reading the source description ‘one character at a time’ until a lexeme is recognised, i.e. an RE has been ‘matched’. The (semantic) action corresponding to that RE is then performed and control is passed back to the parser together with the ‘kind’ of the lexeme that has been recognised.



�A1.2 Example:- 





�



All text between { and } is ‘copied’ to the lexical analyser being produced and must therfore be a valid string in the ‘C’ programming language, likewise auxilliary procedures. ‘[‘ and ‘]’ denote alternatives, e.g. [A-Za-z] denotes the upper and lowercase letters of the alphabet, and ‘-’ denotes a range. ‘+’ is a postfix operator denoting one or more repetitions of its operand, e.g. [0-9]* denotes an unsigned integer of one or more digits. ‘*’ is a postfix operator denoting zero or more repetitions of its operand. ‘{‘ and ‘}’ denote macro-expansion (or textual substitution) of a regular definition, e.g.



digit		[0-9]

[digit]+	expands to [0-9]+



‘\t’ denotes the ‘tab’ character and ‘\n’ denotes the newline character as in ‘standard’ ‘C’ notation.



�Operation:-



1.	If ‘ws’ is recognised no action is taken 	(‘ws’ denotes so-called ‘white-space, i.e

							 a sequence of ‘blank’, ‘tab’ and ‘newline’

							 characters

							)



2.	If the characters ‘if’ are recognised then the lexeme ‘IF’ (defined in the declarations) is 	returned to the parser, likewise for ‘then’ and ‘else’.



3.	If an ‘id’(entifier) is recognised then:



	3.1 	The value of the lexeme is stored in the variable ‘yyval’

	3.2	The lexeme denoted by ‘ID’ is returned to the parser



Note:- key (reserved) words have no associated lexical value. 



�Appendix 2



Questions



1. 	Explain the operation of a lexical analyser.



2.	What ‘kinds’ of lexemes have attributes ? (see, for example, the ‘P’ compiler in

	Capon and Jinks)



3.	Why are all identifiers ‘replaced’ by the same identifier token in the output of a 	

	lexical analyser ?



4.	How can an ‘ad-hoc’ lexical analyser be written ?



5.	Explain, with the aid of an example, how a finite state automaton may be written in

	two different ways (in some programming language).



6.	Explain, with the aid of an example, the operation of a scanner-generator.



7.	Explain, with the aid of an example, how techniques used in a scanner-generator can be 

	used in a text editor ?



8.	What are the sources of non-determinism in a NFA ?



9	Explain, with a brief example, how a DFA may be created from an NFA.



Exercises 



1.a)



Using the EBNF grammar for a <train> draw a DFA which ‘recognises’ strings in the language defined by <train> and use it to develop a Pascal procedure which recognises those same strings.  



<train
>			::=	engine <vans_and_carria
ges> guards_van

<
vans_and_carria
ges
>	::=	(van | carriage)*



b) Convert the EBNF grammar from 1) into a regular expression.



2. 



a) Draw state transition diagrams to illustrate the recognition of key (reserved) words/identifiers and relational operators of a language composed of the following lexemes:-



∆	Key (reserved) words ‘IF’, ‘THEN’, ‘ELSE’



∆	Identifies which begin with a letter and may be followed by an arbitrary sequence of

	letters and digits

	

∆	The relational operators ‘<‘, ‘>‘, ‘=‘, ‘>-’, ‘<=‘



Lexemes are separated by so-called ‘white-space’.



�b) Use the diagrams from a) to write a lexical analyser in ‘pseudo-code’ using the following declarations and procedures:-



TYPE token       = (if, then, else, identifier, begin, end, relational_operator);

     characters  = ...;



VAR  current_token: characters;



PROCEDURE initialise (VAR current_token: characters);

PROCEDURE make_string(ch: char; VAR current_token: characters);

PROCEDURE get_kind   (current_token: characters; VAR kind_of: token);  



operation:-



As each character is read from the source the procedure make_string is called and the characters are stored in the variable current_token. When a complete token has been input, the procedure get_kind is called to determine the kind of the token and its corresponding lexeme. initialise is used to initialise the recognition process.



3. List the sequence of lexemes that the lexical analyser will ‘pass’ to the parser for the following ‘Newt’ program:-



VAR x, y;



BEGIN

  x:=10;

  y:=x;

  z:=3 + 2;

END.



4.



a) Use the method described in this lecture to construct an NFA to recognise the regular expression aa*|bb* where ‘a’ and ‘b’ are alphabet symbols.  



b) Use the method described in this lecture to construct an equivalent DFA and transition table.



5. 



a) Write a regular definition of integer and floating-point constants where such constants may optionally take the form termed ‘scientific notation’, e.g. 1.34E+4, 2.5345E-2, 3.567E10 etc. 



b) Using these definitions derive by inspection, i.e. without using Thompson’s construction) a DFA to recognise integer and floating point constants. 



c) Identify which accepting states relate to the recognition of an integer and which to the recognition of a floating-point number.



d) Give the transition table for the DFA.



� If only this was always the case! Collections of people have contributed their ideas in collaboration and this has resulted in languages which are far from compact (see for example Ada). In other cases, existing languages have had ‘extensions’ added (in a ‘bolt-on’ manner) in the hope of improving their expressive power and this has resulted in the need for a complete redefinition of the language (see for example ‘C’ => ‘C++’, SQL => Object-SQL, etc). 

    

� There are practical limits to the size of software systems which can be designed and implemented around the concept of procedure hierarchies alone. A general solution to this limitation is to provide support for sets of constants, types, procedures and variables with well defined interfaces, i.e. modules (also known as packages, classes, units etc).



“Clarity is our only defence against the embarrassment felt on the completion of a large project when it is discovered that the wrong problem has been solved”  C. A. R. Hoare  

� A typical high-level imperative language, e.g. Pascal, provides two means of embedding non Language descriptions into a program. The first and most useful of these is the identifier. Well written programs, which make use of carefully chosen identifiers, can be read and understood, in conjunction with their original specifications, without further annotation. The second comment mechanism is the explicit comment formed by enclosing arbitrary text in "{" and "}" symbols or "(*" and "*)". For almost all purposes only comments which are necessary take the form of identifiers.



The reasons for this are as follows.



a) Explicit comments are difficult to use properly and can be positively dangerous. Comments, including to a lesser extent those represented by identifiers, make no difference to the behaviour of a program. However, it is all too easy to believe that part of a program does what a comment says it does, even when the program is wrong. 



b) Explicit comments are usually written in English, and English is not a very good language for stating things in an unambiguous fashion. 



c) It is possible to write comments in the language of mathematical logic but this requires specialist skills and knowledge to be effective.



d) Explicit comments break up the layout of a program and make it more difficult to read the text, which describes what the actually program does, as opposed to what the comments may say it does.



e) Inept programmers fall back on explicit comments as they cannot program well enough to make their programs readable and easy to understand.



An analogy can be drawn between a program text and the kind of engineering drawings used in other branches of engineering. Consider what would happen if, for example, the engineering drawing of a ship were annotated with large amounts of extra information specifying the strength and composition of the materials out of which its components should be constructed. It might even contain extra information about the specific behaviours of some moving parts, e.g. "Note: Radcliffe link 9 will only rotate through 45o for each revolution of the McGettrick shaft". Even if the whole ship were described by a large number of such drawings, the documentation would soon become unreadable. 



In practice, both in the hardware engineering industries and the better parts of the software engineering industries, a different approach is used. Engineering drawings and program texts are separated from detailed specification information which is provided in separate documents. In programs, identifiers are used to cross reference between documents. Engineering drawings use part numbers in a similar way. Where both sets of documentation are kept on a computer system, cross referencing between them can be automated.



� Note that an ‘empty’ entry in the table denotes an error.

� Hence NFA simulation is more time-consuming than DFA simulation and DFA simulation is adopted by compilers. 



� It is possible to convert regular expressions to DFA’s in a single ‘step’. The choice of algorithm depends largely upon the application, for example, in a context search in a ‘text editor’ the search string (or target string) is usually specified as a regular expression and the recognising automaton must be both constructed and simulated at ‘run-time’. When this is the case, there is a trade-off between NFA ‘simulation time’ and DFA ‘construction time’ (which is long). Conversely, in a compiler, where the DFA is constructed once during the creation of the compiler, but simulated each time the compiler is executed, a DFA will provide better ‘run-time’ performance.   

� Fischer, C. N., and Leblanc, R. J., “Crafting a Compiler”, Addison Wesley, 1988.



� A complete description of Lex is beyond the scope of this lecture. For further detail see, for example, Capon and Jinks; Aho, Sethi and Ullman; Fischer and LeBlanc.
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