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Lecture 4. Syntax Analysis



Recall, first, that lexical analysis is concerned with the translation of a stream of characters (which represent a string in some programming language) into a sequence of lexemes denoting terminal symbols.



Syntax analysis (or parsing) is concerned with determining if a string is (or is NOT) a member of the set of strings in a language defined by some grammar. To do this, we must verify that, given some starting symbol ‘S’ a valid sequence of terminal symbols (or sentence) in the language can be derived by simply applying the production rules of the grammar defining that language.



This lecture will examine the notions of top-down (recursive descent) parsing, table-driven parsing, bottom-up parsing and LR parsing. 



4.1 ‘Top-Down’ and ‘Bottom-up’ Parsing



In practice, two alternatives means of organising the parsing process present themselves:-



a)	Top-down parsing



	Derives the input sentence from the starting symbol ‘S’ choosing the production rule

	to apply at each stage by inspecting the input, i.e. looking at the ‘next’ input token.  



b) 	Bottom-up parsing



	Reduces the input to the starting symbol ‘S’ by reading tokens from the input until

	a pattern of tokens has been identified which matches the right-hand side of a 

	production rule, then, replace that pattern by the non-terminal on the left-hand

	side of the production rule. 



Symbolically, we can represent these processes independently of any considerations relating to a ‘real’ programming language. For example, given some (simple) grammar, e.g.



S -> pAb	Production No. 1

A -> cdB | a	Productions No. 2 and 3

B -> cb		Production No. 4



and some string in the language defined by this grammar, e.g. pcdcbb



then, by top-down parsing:-



Step No.	State Of Input		Derivation	Rule Applied



1		^pcdcbb			^S		---

2		^pcdcbb			^pAb		Production No. 1

3		p^cdcbb			p^Ab		---

4		p^cdcbb			p^cdBb		Production No. 2

5		pc^dcbb			pc^dBb		---

6		pcd^cbb			pcd^Bb		---

7		pcd^cbb			pcd^cbb		Production No. 3

8		pcdc^bb			pcdc^bb		---

9		pcdcb^b			pcdcb^b		---

10		pcdcbb^			pcdcbb^		---



The recognition process begins with some notion of an ‘input pointer’ being positioned immediately before the first token in the ‘input stream’ and a ‘derivation pointer’ being placed immediately before the first derivation (initially the start symbol ‘S’). The parser then commences recognition by top-down derivation with the starting symbol ‘S’. The parser ‘reads’ the next (initially the first) token in the input stream and updates the ‘input pointer’ accordingly. Based solely upon the ‘current’ token the parser ‘chooses’ a production rule to apply. As there is a single production for ‘S’ whose right-hand side starts with a ‘p’ the parser replaces ‘S’ by ‘pAb’. At this point in the recognition process, the parser has ‘successfully’ matched the ‘p’ in the input stream with the ‘p’ in the derivation, i.e. it has determined that the first token in the input is a ‘p’ which is a valid symbol given the grammar. Once this match has been established, the ‘derivation pointer’ is positioned immediately after the ‘p’ in the derivation and the parser ‘notes’ that production rule No. 1 has been applied.



In the next step, the parser ‘reads’ the next token from the input stream (a ‘c’) and examines the next symbol in the derivation (an ‘A’). As there is only one production for ‘A” whose right-hand side begins with a ‘c’ then ‘A’ is replaced in the derivation by ‘cdB’ and both ‘pointers’ are repositioned, and the parser again ‘notes’ that production rule No. 2 has been applied.



The next input symbol (‘d’) matches the next symbol in the current derivation (the current sentential form) and, since this is a terminal symbol this step (No. 4) is complete and the parser ‘reads’ the next token from the input.



In this manner, the parser proceeds with the recognition using the ‘current’ input symbol to guide the ‘expansion’ when the next symbol in the derivation is a non-terminal or, if not, matching it with the next terminal symbol in the derivation. 



When the entire input has been ‘read’ the parser has established that the derivation is identical to the input, i.e. it has demonstrated that the input program can be derived from the starting symbol by strict application of the production rules - a simple proof that the input ‘string’ is a string in the language defined by the grammar.



A ‘bottom-up’ derivation is essentially the reverse of a ‘top-down’ derivation, i.e. the parser starts with the input string and ‘reads’ it, token by token, until a pattern of tokens has been ‘read’ which corresponds to the right-hand side of a production rule. The parser then replaces the pattern recognised by the non-terminal on the left-hand side of the production rule and poisitions the ‘derivation pointer’ to the left of the inserted non-terminal.



Reverse Derivation	Comment



^pcdcbb			---

p^dcbb			---

pcd^cbb			---

pcdc^bb			---

pcdcb^b			cb is RHS of Production No. 4 so replace by B

pcd^Bb			---

pcdB^b			cdB is RHS of Production No. 2 so replace by A

p^Ab			---

pA^b			---

pAb^			pAb is RHS of Production No. 1 so replace by S

^S			---

S^			finished



Note how the input string is reduced to the starting symbol, thus if the input string can be reduced to the starting symbol ‘S’ then this a proof that the input string can be derived from ‘S’, i.e. that the input string is a string in the language defined by the grammar.



�4.2 Parse Trees 

        

Showing that a string has a valid derivation with respect to some grammar is directly equivalent to constructing a parse tree. If a top-down approach to construction is adopted then the tree is constructed from a root (the starting symbol) to its leaves(the terminal symbols comprising the input). A bottom-up approach starts with the leaves and works ‘towards’ the root.



The parse tree for the simple string analysed earlier (pcdcbb) is shown below:



S

|
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  |

  c d B

      |

      c b



All syntax analysers have an action which is directly equivalent to constructing a parse tree, but a given analyser may not actually construct such a tree.



4.3 Top-Down Parsing - General Considerations



The process of parsing in a top-down manner requires a decision to be made about which production to apply, i.e. the production rule to be applied is determined by inspecting the ‘next’ input symbol and this provides sufficient information, in most modern programming languages, to determine which rule to apply. 



A parser is termed ‘deterministic’ if the parsing process is relies solely upon inspection of the next input symbol (or symbols) and this property places constraints upon the form of the grammar used to define the language whose strings are to be parsed.



Top-down determinsitic parsers are termed predictive parsers whose first ‘construction step’ is to find a grammar (which defines the language whose strings are to be parsed) which is deterministic. Given a non-deterministic grammar the decision regarding which production rule to apply is undefined, for example, the grammar below has leaves the choice of production rule to be applied when parsing a DECLIST undefined - it could be rule (2) or rule (3).



PROGRAM  -> begin DECLIST ; STATLIST end		(1)

DECLIST  -> d ; DECLIST				(2)

DECLIST  -> d						(3)

STATLIST -> s ; STATLIST				(4)

STATLIST -> s						(5)



Fortunately, in general, it is possible to derive an equivalent grammar that is deterministic, e.g. by left-factoring out the common part of the appropriate rules, e.g.





PROGRAM  -> begin DECLIST ; STATLIST end		

DECLIST  -> d X						

X        -> ; DECLIST

X        -> e

STATLIST -> s Y

Y        -> ; STATLIST

Y        -> e 

 						

�4.4 Top-Down Parsing: Parsing By Recursive Descent.

 

The organisation of a parser can be made isomorphic to the structure of a grammar which defines the language to be parsed, i.e. the very structure of the embodies the same pattern� as the grammar which defines the language to be parsed. Firstly, a parser organised this way requires that the input structure be defined by a grammar and secondly, it ensures that the resulting program has a structure which ‘matches’ that input structure. By ‘matches’ two features are implied:



a)  	For each non-terminal in the grammar the program contains a corresponding procedure 	

   	which has been derived using recursive descent.



b) 	The statements in each procedure declaration correspond to the structure of the definition 	

	of the corresponding non-terminal. 



In order to derive a program in this way, the grammar must be such that whenever a decision has to be made in the program, because of an alternative in the grammar, the decision can be based purely on the input so far processed up to and including the current input symbol, i.e. we can not go back and try to work out what to do next, the decision must be based on what we currently know. This means that the first symbols of any set of alternatives in the grammar will always be distinct.



Distinct First Symbols		Non-distinct First Symbols



<object> ::= a <rest>  | b	<object> ::= a | a b <rest>

<rest>   ::= c		<rest>   ::= c



In order to describe the method of recursive descent we will postulate two ‘facilities’ which are already available to us:-



a) A variable current which holds the value of the current input symbol. 



b) A procedure read_sym which gets the next symbol from the input stream. 



A program containing these facilities might take the general form: 



PROGRAM parser;



    TYPE symbol = ...;



    VAR  current: symbol;



    PROCEDURE read_sym(VAR current: symbol);

    BEGIN

      .

      .

    END;



BEGIN

END.



The information kept in the variable current  depends on the kind of the current symbol. For an integer, it would include its numeric value, for an identifier its spelling etc. The type of ‘symbol’ is therefore composite. As each lexeme is detected the variable symbol is be updated so that it reflects the kind of symbol detected and its value.





�Rules for Deriving a Program from a Grammar.



For each non-terminal, X, defined by the grammar, declare a procedure, recX. The statements in the block of the procedure declaration are derived from the definition of X, as follows:-



�



The procedure error and the significance of the firsts and follows are described later. The statements for .. are the statements which result from applying the rules recursively to whatever substructure occurs at that point in the syntax graph.





These rules result in a program which validates or recognises the input. In order to complete the required processing it is necessary to augment the statements to include the semantic actions. 



�Semantic Actions.



The rules for semantic processing, i.e. the actions that are to be taken as a result of the recognition process, are less well defined than those for recognition. However, some useful ‘rules of thumb’ are given below:-



Rule 1: 	



Semantic actions associated with input symbols and their occurrence in a grammar definition are invoked when the input symbol is recognised, immediately before the call on read_sym which gets the next symbol. Consider the following example:



    PROCEDURE rec_footing;     

    BEGIN       

      IF first_non_std(current) THEN rec_non_std       

      ELSE       

      IF current = payment_complete THEN 

      BEGIN

        .

        {invoke semantic action(s)}

        read_sym

      END       

      ELSE error("no footing", end_of_input)     

    END;     



Rule 2:	



Symbol values required for later processing within a non-terminal are assigned to a variable declared locally within the recognition procedure for that nonterminal and initialised as the first statement of the body of that procedure. Consider the following example:

    

    PROCEDURE rec_footing;     

        VAR   copy_of_current: symbol;

    BEGIN

      copy_of_current:=current;

      { copy_of_current now contains a copy of value of 'current'           

       when 'rec_footing' was entered which can be used even if            

       value of current changes within scope of 'rec_footing'

     }    

      IF first_non_std(current) THEN rec_non_std       

      ELSE       

      IF current = payment_complete THEN read_sym       

      ELSE error('no footing', end_of_input)     

    END;



Rule 3: 	



Non-terminals may have values associated with them, generated by the semantic actions in their recognition procedures and required by the procedures which call them. In this case, the recognition procedure is declared to have a variable parameter which is used to transmit the value. Consider the following example:

�

    PROCEDURE rec_footing(VAR was_payment_complete: Boolean);     

    BEGIN

      was_payment_complete:=false;       

      IF first_non_std(current) THEN rec_non_std       

      ELSE       

      IF current = payment_complete THEN

      BEGIN

        was_payment_complete:=true

        read_sym

      END       

      ELSE error('no footing', end_of_input)     

    END;     

 

Rule 4: 	



Output actions are derived from a grammar for the output and ‘fitted’ onto the input grammar. These and the semantic actions can be written on the arrows of the syntax graphs for the input grammar as a means of documentation. 



First Functions.



Each first function is designed to return the value true if its symbol parameter is one of the set of symbols which can be the first symbol in the sequence of symbols which make up the nonterminal with which it is associated. The functions can be constructed systematically in a way analogous to the recognition procedures, based on the structure of the definition of each nonterminal.



�



The rules above give the statement part of the declaration of a first function for the nonterminal X. These would be embedded in the following function declaration:-



FUNCTION firstX(current: symbol): Boolean; 

BEGIN 

{statements above} 

END;



If we consider the function first_body used in the example program, then using the above rules it would take the form:



FUNCTION first_body(current: symbol): Boolean; 

BEGIN 

  first_body:=first_line(current) 

END;



There is an alternative way of implementing the bodies of these functions which involves the use of Pascal sets, and whose systematic generation is analogous to that described above. Its details are left as an exercise for the reader acquainted with the Pascal types involved.



�Error Handling



An error procedure is provided which is responsible for error reporting and recovery. Its two parameters are an error message and a value which it uses to accomplish error recovery. Error recovery consists of finding a position in the input which is recognisable as sensibly following the object which caused the error recovery. Consider the following example. The procedure rec_table examines the value of 'current' after the call to rec_heading and discovers that it is not a first symbol which is valid for the body of the table:



    PROCEDURE rec_table;     

    BEGIN       

      rec_heading;       

      IF first_body(current) THEN rec_body       

      ELSE error('missing body', first_of_footing);       

      IF first_footing(current) THEN rec_footing       

      ELSE error('missing footing', end_of_input)     

    END



The procedure error is called with two parameters, an error message to say that the body of the table is missing (since the appropriate first symbol has not been detected) and the variable first_of_footing which contains a value corresponding to any valid first symbol for the table footing (in this case the terminal symbols non-standard payment and payment complete).



It is the responsibility, in this example, of the procedure error to output the appropriate message and to scan the input stream to find the first occurrence of either of these two values using read_sym, or, if non can be found to return some 'error' value as the current symbol. The value of current can then be used by the next statement in rec_table. The second parameter specifies the set of symbols which can follow the failed item in the definition in which it occurred. For example, in a sequence, the follows of the ith item in the sequence are those symbols which can start the i+1th. These can be deduced systematically in much the same way as the first and recognition functions described previously.



4.5 LL1 Grammars and S-Grammars



LL1 grammars are type 2�, i.e. context-free, grammars (in Chomsky’s hierarchy). The previous section demonstrated how a top-down deterministic parser can be produced systematically from such a grammar. The syntax of most (useful!) programming languages are defined by grammars which, if not initially LL1, can be transformed into an LL1 form. S-Grammars are a subset of LL1 grammars which have the following form:-



An S-Grammar is a type 2 grammar such that:-



∆ The right-hand side of each production starts with a terminal symbol



∆ Alternative productions of a non-terminal begin with a different terminal symbol



∆ No alternative is empty (has no symbols)



LL1 grammars ‘relax’ conditions which apply to S-Grammars, i.e. the right-hand side of a production can begin with a non-terminal and non-terminals can define the ‘empty’ string.



�Recall from the previous section, the notion of first- and follow-sets, i.e.



FIRST(a) 	The set of terminal symbols that could start the sequence of symbols

	derived from the sequence of symbols a. 



FOLLOW(A) 	The set of terminal symbols that can immediately follow the non-terminal

	‘A’ in a sentential form (or derivation).



For simple grammars, these two sets can be determined by inspection, e.g.



S’ -> S$	

S  -> aPd	FIRST(aPd) = {a}	FOLLOW(S) = {$)

P  -> Xz	FIRST(Xz)  = {b, d}	FOLLOW(P) = {d}

P  -> ab	FIRST(ab)  = {a}	

X  -> Qr	FIRST(Qr)  = {b}	FOLLOW(X) = {z}

X  -> d	FIRST(d)   = {d}

Q  -> b	FIRST(b)   = {b}	FOLLOW(Q) = {r}



S’ -> S$ denotes a production in which S is still the starting symbol and where the grammar has been ‘augmented’ with the additional ‘dummy’ production to allow FOLLOWS(S) to be computed in exactly the same way as in other productions. Many compilers also introduce an explicit ‘end-of’-input’ symbol which is represented by the ‘$’ symbol in the above grammar, thus, S’ = S$ is often ‘added’ to a grammar.



For more complex, i.e. irregular, grammars the calculation of the FOLLOW sets is more problematic. In the example below, two non-terminal symbols appear together in the second production:-



S’ -> S$	

S  -> aPd	FIRST(aPd) = {a}	FOLLOW(S) = {$)

P  -> XQz	FIRST(XQz) = {b, d}	FOLLOW(P) = {d}

P  -> ab	FIRST(ab)  = {a}	

X  -> Qr	FIRST(Qr)  = {b}	FOLLOW(X) = {b}

X  -> d	FIRST(d)   = {d}

Q  -> b	FIRST(b)   = {b}	FOLLOW(Q) = {z, r}



Here, all the FIRST and FOLLOW sets for S and P are the same as as the previous grammar, the FOLLOW set for Q is {z, r} and the FOLLOW set for X is ? Well, it is the set of terminals that can immediately succeed X in a sentential form, thus FOLLOW(X) must include FOLLW(Q). Since X does not appear on the right-hand side of any other production then FOLLOW(X) = FIRST(Q).



Another kind of complication arises when a non-terminal appears as the last (right-hand side) symbol of a production:-



S’ -> S$	

S  -> aPd	FIRST(S)   = {a}	FOLLOW(S) = {$)

P  -> Xz	FIRST(Xz)  = {b, d}	FOLLOW(P) = {d}

P  -> aX	FIRST(aX)  = {a}	

X  -> Qr	FIRST(Qr)  = {b}	FOLLOW(X) = {z, d}

X  -> d	FIRST(d)   = {d}

Q  -> b	FIRST(Q)   = {b}	FOLLOW(Q) = {r}



In this example, z can follow X and since P->aX presumably something else can also follow X ? In fact, the members of FOLLOW(P) must be the members of FOLLOW(X), since, given the sentential form aaXd derived as S=>aPd=>aaXd, X comes at the end of the string replacing P everything that follows P must ‘automatically’ follow X.



In the final example, below, a production contains an ‘empty’ alternative, i.e. since Q-> e then ‘r’ must be added to FIRST(Qr)  

 

S’ -> S$	

S  -> aPd	FIRST(aPd) = {a}	FOLLOW(S) = {$)

P  -> Xz	FIRST(Xz)  = {b, d, r}	FOLLOW(P) = {d}

X  -> aX	FIRST(aX)  = {a}	

X  -> Qr	FIRST(Qr)  = {b, r}	FOLLOW(X) = {z, d}

X  -> d	FIRST(d)   = {d}

Q  -> b	FIRST(b)   = {b}	FOLLOW(Q) = {r}

Q  -> e	FIRST(e)   = { e}



4.6 Algorithms For Computing First and Follow Sets



The FIRST set for all symbols, i.e. terminal symbols and non-terminal symbols, of a grammar can computed by applying the following rules iteratively until no further members can be added to the FIRST sets.



Given a string a with the form a1 a2 a3 ...an 



1. IF ai is a terminal symbol add it to FIRST(a)



2. IF ai is a non-terminal symbol add FIRST(ai) to FIRST(a)    



3. For the largest ‘i’ such that a1 a2 a3 ...ai-1 are non-terminals and each can be e then:-



	FOR j:=1 TO I DO

                      	  add non- e symbols of FIRST(ai) TO FIRST(a)



IF all ai’s can start with e THEN also add e to FIRST(a) 



Note:



In rule 3 everything in FIRST(a1) must be in FIRST(a). If there is no production for a1then add nothing else to FIRST(a). Alternatively, if a1 -> e then add FIRST(a2) to FIRST(a) etc, etc, etc as in the last example of FIRST and FOLLOW sets in the previous section where X->Qr and Q->e



Similarly for FOLLOW sets:-



1. Put $ in FOLLOWS(S) IF s is the starting symbol



2. If there is no production of the form A->aBb and B is not e then add symbols that can start the symbol string b, i.e. FIRST(b) to FOLLOW(B)



3. If there is a production of the form A->aB or A->aBb where FIRST(b) contains e then add members of FOLLOW(A) to FOLLOW(B), i.e. everything that can follow A can also follow B if FIRST(b) contains e. Note that the rest of FIRST(b) must also be added to FOLLOW(B).



Example:-



Using the last grammar from the previous section:-



FIRST sets



S -> aPdf	by rule 1 FIRST(aPd) = {a}

Q -> b	by rule 1 FIRST(b) = {b}

X -> Qr	by rules 2 and 3 FIRST(Qr) = {b, r}

X -> d	by rule 1 FIRST(d) = {d}

p -> Xz	by rule 2 FIRST(Xz) = {b, r, d}

p -> aX	by rule 1 FIRST(aX) = {a}



FOLLOW sets



S	by rule 1 add $ to FOLLOW(S) 

	No productions with S on RHS. 

	FOLLOW(S) = {$}



P	by rule 2 and production S->aPd, add d to FOLLOW(P)

	No other productions with P on RHS

	FOLLOW(P) = {d}



X	by rule 2 and production P->Xz, ass z to FOLLOW(x)

	  by rule 3 and production P->aX, add members of FOLLOW(P) to FOLLOW(X)

	No other productions with X on RHS.

	FOLLOW(X) = {z, d}



Q 	by rule 2 and production X->Qr, add r to FOLLOW(Q)

	No other productions with Q on RHS

	FOLLOW(Q) = {r}



4.7 Properties of LL1 Grammars



The notion of FIRST and FOLLOW sets can be used to define the properties of an LL! grammar, i.e.:-



∆ LL1 grammars are unambiguous

∆ LL1 grammars have no left-recursive productions

∆ For no terminal ‘x’ do a and b derive strings beginning with ‘x’, i.e. FIRST(a) and FIRST(b) are disjoint

∆ Only one of a or b may derive the empty string

∆ If b=>*e then a does not derive any string beginning with a terminal symbol in FOLLOW(A), i.e. in such cases FIRST(a) and FOLLOW(A) are disjoint



These rules generalise to productions with >2 alternatives.



The last restriction above can be shown to be needed where, for example:-



S -> pAb

A -> b | e 



and the symbol string is ‘pb’ since, in deriving this top-down’, 



S => pAb



but a single symbol look ahead does not provide enough information to determine which production for A to apply, i.e. A can derive a string starting with a member of FOLLOW(A), more specifically, ‘b’.





4.8 Top-Down Table-Driven LL1 Parsing



Table-driven LL1 parsing is based upon the notion of a ‘machine’ capable of recognising strings of an LL1 language. This kind of a machine is termed a ‘Push-Down’ Automaton (PDA) and is similar to an FSA (used in lexical analysis) however, the parsing algorithm in a PDA is driven by a parsing table rather than a transition table. In addition, as this machine must be able to ‘record’ its previous states, it has a stack. The parsing algorithm itself is completely general and can be used to parse strings in a language defined by any LL1 grammar, the information specific to a particular language’s grammar is ‘stored’ in the parse table.



�



The input buffer contains the string to be recognised (with an explicit $ symbol denoting the ‘end of input’). An ‘input pointer’ indicates the ‘current’ input position. The stack contains the symbols of the derivation yet to be matched and in reverse order. The parsing table (in this case for an s-grammar which is simpler than a table for an LL1 grammar) shows which production to apply whenever the ‘next’ symbol in the ‘current’ derivation is a non-terminal symbol. A production rule for a non-terminal is ‘added’ in the non-terminal’s column, in the row corresponding to the terminal which starts it’s right-hand side.



      p      q      a      b      x      y      d      $

S     S->pX  S->qY

X                   X->aXb        X->x

Y                   Y->aYd               Y->y



The table is indexed by M[A, a] where ‘A’ is a non-terminal and ‘a’ is a terminal symbol, ‘empty’ entries when selected denote a syntax error. If, for example, the ‘next’ symbol to be matched in the derivation is ‘X’ and the next input symbol is ‘a’ then the parse table entry M[X, a] maps to the production rule to be applied, i.e. X->aXb.



The operation of the PDA is described by the algorithm shown below:-



�LL1 Parsing Algorithm



BEGIN

  stack:=push($S, empty_stack);

  accept:=false;

  error:=false;

  get_lexeme(current);

  REPEAT

    IF is_a_terminal(top(stack)) THEN

      IF top(stack) = current THEN

        IF current = ‘$’ THEN accept:=true

        ELSE

        BEGIN 

          pop(stack);

          get_lexeme(current)

        END

      ELSE

      IF M[top(stack), current] = blank THEN error:=true

      ELSE

      BEGIN

        pop(s);

        push(M[top(stack], current];

        update_parse_record(production)

      END 

  UNTIL accept OR error

END



The recognition of the string ‘paaaxbbb’ by the PDA is shown below:-



�Input Buffer	Stack	Rule Applied

^paaaxbbb$	$S	

^paaaxbbb$	$Xp	P1

p^aaaxbbb$	$X	None

p^aaaxbbb$	$bXa	P3

pa^aaxbbb$	$bX	None

pa^aaxbbb$	$bbXa	P3

paa^axbbb$	$bbX	None

paa^axbbb$	$bbbXa	P3

paaa^xbbb$	$bbbX	None

paaa^xbbb$	$bbbx	P4

paaax^bbb$	$bbb	None

paaaxb^bb$	$bb	None

paaaxbb^b$	$b	None

paaaxbbb^$	$	None

paaaxbbb$^	empty	None



An LL1 parser is a software component which simulates the operation of the PDA driven by a parse table and which produces a history of the parse. The construction of the parse table for the simple s-grammar above was relatively straightforward, i.e. each alternative production for a given non-terminal symbol in an s-grammar begins with a different terminal symbol, thus, each production rule A -> a is taken in turn and ‘inserted’ into the entry M[A, a] where ‘a’ is the terminal symbol starting a.



4.8.1 LL1 Parse Table Construction    





As suggested in the previous section, constructing a parse table for an LL1 grammar is rather more complex a task than constructing a parse table for an s-grammar, i.e. in an LL1 grammar productions may contain right-hand sides which begin with non-terminal symbols and which may have ‘empty’ alternatives. To construct a parse table for an LL1 grammar each production A -> a is again taken in turn and the steps shown below are applied:-



1. For each terminal symbol ‘a’ in FIRST(a) the production rule A -> a is added to the parse table

   M at entry M[A, a]



2. IF e is in FIRST(a) then A -> a is added to the parse table entry M[A, b] for each terminal ‘b’ in 

   FOLLOW(A), i.e. if the production yields an empty string then the next symbol appearing will be in 

   FOLLOW(A).



3. Rule 2 is also applied if e is in FIRST(a) and $ is in FOLLOW(A), i.e. A -> a is added to M[A, $]

have more than one definition, i.e. more than one production is assigned, the grammar defined is NOT LL1 and has to be transformed so that it is LL1. Some parser generators will perform this transformation ‘automatically’, e.g. by removing left recursion and by left factoring.



Rule 1 above is a generalisation of the rule for s-grammars, i.e. add production A -> a a to parse table at M[A, a], in that it embodies the notion that the right-hand side of a production can start with a non-terminal symbol in an LL1 grammar. Rule 2 above deals with empty productions, for example, given the grammar:-



S -> aPd

P -> Xz | e



and the string:-



‘ad’



then, using LL1 parsing techniques, the initial derivation is ‘S’ and the first symbol of the input is ‘read’ and found to be ‘a’. The parse table entry at M[S, a] yields S -> aPd and the current derivation (sentential form) becomes aPd. The next input symbol is ‘d’ and the next symbol in the derivation is ‘P’. Evidently, the second alternative for ‘P’, i.e. P -> e must be applied, thus, the parse table entry for M[P, d] yields P -> e. This example serves to demonstrate the general technique for dealing with situations where some non-terminal symbol ‘A’ can be replaced by an empty string, i.e. when we reach ‘A’ in such a parse we expect the next symbol in the input to be either:-



a) A member of FIRST(A), i.e. corresponding to a non-empty alternative for ‘A’



b) A member of FOLLOW(A), i.e. corresponding to an empty alternative for ‘A’



And Rule 2 above serves to provide the information needed to handle empty alternatives. Rule 3 is almost identical to Rule 2 and is needed only because the ‘end of input’ symbol is not ‘strictly speaking’ a terminal symbol in the language.



The parse table for the grammar used earlier is constructed below with the FIRST and FOLLOW sets repeated for convenience.



S’ -> S$

S -> aPd	FIRST(aPd) = {a}	FOLLOW(S) = {$}

P -> Xz	FIRST(Xz) = {b, d, r}	FOLLOW(P) = {d}

X -> aX	FIRST(aX) = {a}

X -> Qr	FIRST(Qr) = {b, r}	FOLLOW(X) = {z, d}

X -> d	FIRST(d) = {d}

Q -> b	FIRST(b) = {b}	FOLLOW(Q) = {r}

Q -> e	FIRST(e) = {e}



Using the first rule for table construction:-



S -> aPd	is inserted in M[S, a]

X -> aX	is inserted in M[X, a]

X -> d	is inserted in M[X, d]

Q -> b	is inserted in M[Q, b]

P -> Xz	is inserted in M[P, b] and also M[P, r] since FIRST(Xz) = {b, d, r}

Q -> Qr 	is inserted in M[Q, b] and also M[Q, r] since FIRST[Qr) = {b, r}



Using rule 2:-



Q -> e 	is inserted into M[Q, r] since FIRST(e) = {e} and FOLLOW(Q) = {r}



        a        b        d        r        z        $

S       S->aPd

P                P->Xz    P->Xz    P->Xz

X       X->aX    X->Qr    X->d     X->Qr

Q                Q->b              Q->e



�4.9 Bottom-Up Parsing



In this section bottom-up parsing will be considered, first, in general terms, then in terms of a simple bottom-up parsing scheme termed shift-reduce parsing, and finally a relatively powerful generalisation of shift-reduce parsing termed LR parsing for which an example of a parser-generator, Yet-Another-Compiler-Compiler (YACC) is widely available.



4.9.1 Introduction to Bottom-Up Parsing



Consider, first, the string ‘real a, b’ in the language defined by the grammar:-



P1	S      -> real IDLIST

P2	IDLIST -> IDLIST, ID

P3	IDLIST -> ID

P4	ID     -> a | b | c | d



One possible derivation sequence for the string ‘real a, b’ is:-



S => real IDLIST => real IDLIST, ID => real IDLIST, b => real ID, b => real a, b



Recall how, with a top-down parsing technique, the sequence of sentential forms shown above is generated from left-to right, i.e. the parser starts with the ‘start’ symbol of the language (S) and substitutes the left-hand side of the productions with their respective right-hand sides, i.e. productions are re-written, until a string is derived from the ‘start’ symbol.



In a bottom-up approach, the parser starts with the string and generates the sentential form shown above in a right-to-left manner, i.e. it starts with the string and replaces the right-hand side of productions by their respective left-hand side until the string has been reduced to the ‘start’ symbol (S).



The action of a bottom-up parser is to scan the input string whilst at the same time trying to find a ‘match’ with the right-hand side of a production, termed a handle, and then substitutes this handle with the non-terminal on the left-hand side. In practice, determining which reduction to apply depends upon the context of the handle, i.e. the string preceding and following the handle in the current sentential form. Indeed, the parser must somehow keep a record of all handles which have been partially recognised as it ‘reads’ the input string!



The example below demonstrates the basic notion of bottom-up parsing, in particular the conflicts that can occur on reduction, i.e. in this example the ‘correct’ decision has been taken without denoting why!



Input	Comment

^real a, b $	

real^ a, b $

real a^, b $	reduce ‘a’ by P4

real ^ID, b $

real ID^, b $	reduce ‘ID’ by P3

real ^IDLIST, b $	

real IDLIST^, b $	to reduce ‘real IDLIST’ here would be ‘wrong’!

real IDLIST, ^b $

real IDLIST, b^ $	reduce ‘b’ by P4

real IDLIST, ^ID $

real IDLIST, ID^ $	reduce ‘IDLIST, ID’ by P2, to reduce ‘ID’ by P3 here would be ‘wrong’!

real ^IDLIST $

real IDLIST^ $	reduce by P1

^S $

S^ $

 

The above parse was ‘successful’ in that, at the end of the string to be parsed (denoted by $) the string has been reduced to the start symbol (S). In this example, the conflicts of when to apply a reduction are resolved by inspecting the next symbol from the input string, e.g. it is possible to apply the reduction for P1 when the next input symbol is ‘S’, and similarly the reduction for P3 should only be applied when the next input symbol is a ‘,’ (comma). 



The following terms are widely used in the context of bottom-up parsing:-



Rightmost Derivation



At each step in the derivation the right-most non-terminal in the sentential form is replaced, i.e. replaced by the right-hand side of the production rule. Similarly, left-most derivations.



Right-Sentential Form (RSF)



A(n) RSF is a sentential form which arises in a right-most derivation, Left Sentential Forms (LSF’s) are similarly defined.



Handle



The handle of a(n) RSF, denoted by ‘g’, is a substring of ‘g’ which corresponds to the right-hand side of some production rule. However, for the substring to be a handle, it must be in such a ‘position’ in ‘g’ that when it is replaced by the non-terminal on the left-hand side of the production, then the previous RSF in a right-most derivation of ‘g’ is obtained. 



Viable Prefix



A viable prefix of a(n) RSF is a prefix that does not ‘extend’ beyond the right-hand end of the right-most handle of the RSF.



Note that, as the right-most non-terminal symbol is expanded at each stage in a right-most derivation, the string to the right of the handle must consist solely of terminal symbols.



Example:-



Grammar	S -> aABe

	A -> Abc | b

	B -> d



Input String	abbcd



Right-Most Derivation		Handle	Viable Prefixes

S

aABe		aABe	a, aA, aAB, aABe

aAde		d	a, aA, aAd

aAdcde		Abc	a, aA, aAb, aAbc

abbcde		b (i.e. the first one)	a, ab



Handles and viable prefixes are determined by staring with the string to be parsed and ‘working back’ to the start symbol (S). A bottom-up parser ‘scans’ the input string from left to right, ‘reading’ a single input symbol at a time and attempting to ‘recognise’ a handle from the members of the set of viable prefixes. 



�4.9.2 Shift-Reduce Parsing



Recall how most (useful) programming languages have context-free (type 2) grammars and how such grammars can be recognised by a push-down automaton (PDA). A relatively simple bottom-up parsing technique termed shift-reduce parsing, can be based upon the notion of a PDA. 



�



Although a machine like that shown above resembles the LL1 PDA its action differs. The parse begins with the input string in the input buffer and the stack initialised to contain only the ‘end of input’ symbol ($). Tokens are ‘read’ from the input buffer and pushed (or shifted) on to the stack. When it can be determined (recognised) that the symbols on the top of the stack represent a handle the symbols are popped off the stack and replaced by the non-terminal symbol on the right-hand side of the production for that handle, i.e. a reduction takes place. Thus, the stack at any ‘instant’ in the execution of the machine contains a string which represents the ‘progress’ of the parser in ‘reducing’ the input string.



In general there are four possible ‘moves’ that may take place at any one point in the parse:-



1. Shift



Advance the input pointer ‘over’ the next symbol and push the symbol on to the stack



2. Reduce



The sequence of symbols on top of the stack ‘matches’ the handle of production ‘n’, and so these symbols are popped off the stack and the non-terminal on the right-hand side of production ‘n’ is substituted. The parse history is then updated.



3. Accept



The parse has terminated successfully.



4. Error



A syntax error has been identified.



The move made at any stage in the parse is determined by the parse table which is, in effect, ‘indexed’ by the ‘current’ input symbol and the ‘state’ of the stack. The parse table is specific to the grammar defining the string to be parsed (similarly to the parse table used in LL1 parsing), thus, the fundamental ‘problem’ is to construct the parse table - an issue dealt with in the section on LR parsing.



�Example:-



Grammar		S -> AB

		A -> x | Ay

		B -> z



Input String		xyz



Right-Most Derivation	S=>AB=>Az=>Ayz=>xyz



Stack	Input	Action taken	Stack Unmatched Input

$	^xyz$	Shift	xyz

$x	x^yz$	Reduce ‘x’ to ‘A’ 	xyz

$A	x^yz$	Shift	Ayz

$Ay	xy^z$	Reduce ‘Ay’ to ‘A’	Ayz

$A	xy^z$	Shift	Az

$Az	xyz^$	Reduce ‘z’ to ‘B’	Az

$AB	xyz^$	Reduce ‘AB’ to ‘S’	AB

$S	xyz^$	Accept	S



In the above example, entries in the right-hand column show the concatenation of the unmatched input, i.e. the input to the right of the pointer ‘^’ ignoring the ‘$’ symbol, with the contents of the stack. This is the sequence of right-sentential forms (RSF’s) produced in the right-most derivation of the input string, and is generated in ‘reverse’ by the shift-reduce parser. Thus the contents of the stack are prefixes of right-sentential forms.



It can be demonstrated, e.g. Section 4.5 of the Dragon Book, that the handle of a(n) RSF always appears (eventually!) on the top of the stack and thus that it is never necessary to ‘search’ inside the stack for a handle. As a consequence, the set of prefixes that can appear on the stack of a shift-reduce parser is the set of viable prefixes.



4.9.3 Conflicts in Shift-Reduce Parsing



A context-free grammar may contain productions whose structure cannot be ‘processed’ by a shift-reduce parser, i.e. the parser may arrive at a shift-reduce conflict, or a reduce-reduce conflict. 



Example:-



Production Rule



statement -> ‘IF” expression “THEN” statement 

             | 

             “IF” expression “THEN’ statement “ELSE” statement

	

Input String Form



“IF” expression “THEN” “IF” expression “THEN” statement “ELSE” statement



Eventually the stack of a shift-reduce parser for the above grammar will contain:-



‘IF” expression “THEN” “IF” expression “THEN” statement



 and the next input token will be “ELSE”. In such a situation it is not possible to determine whether to reduce “IF” expressions “THEN” statement or whether to shift the “ELSE” on to the stack. The reduce option associates the “ELSE” with the first “IF” whereas the shift option relates it to the second “IF”. Typically, this problem is solved by ‘associating’ an “ELSE” with the ‘nearest’ “IF”  which causes the parser to shift rather than reduce.



�Reduce-reduce conflicts are less likely and, as has been suggested in this course, are usually due to ‘problems’ with the grammar defining the language whose strings are to be parsed, i.e. the grammar is irregular. In the example of reduce-reduce conflict below, the ‘overloading’ of a symbol pair causes us some problems!



Example:-



In block-structured imperative languages, e.g. Pascal, Ada, Modula-2 etc, a procedure-call statement may contain actual parameters, e.g.



do_some_thing(actual_parameter_1, actual_parameter_2);



Where a language uses ‘(‘ ‘)’ to denote access to a variable of some array type, e.g. Ada, Fortran and BASIC (but not Pascal!) then the statement:-



do_some_thing(actual_parameter_1, actual_parameter_2);



will be transformed by the scanner into the token sequence:-



identifier(identifier, identifier) 



and the parser is unable to determine whether to apply reductions associated with procedure (call) or array (access) !



4.10 LR Parsing



LR parsing is an efficient and practical method of shift-reduce parsing for context-free grammars which are deterministic. LR grammars are a proper superset of LL grammars and, it can be argued, recursion and common ‘stems’ to productions cause no problems for LR parsers whereas left-recursion has to be ‘removed’ and left-factoring is usually required to make a grammar LL1�.



LR Parsing



L	The input symbols are ‘read’ from left to right

R	The right-most derivation in reverse





Derivations begin with the ‘start’ symbol (S) and expand the non-terminals. LR parsing starts with the input string and reduces handles until the start symbol is derived, i.e. the derivation is ‘in reverse’. The operation of an LR parser, as might be suspected, is similar to that of a shift-reduce parse, i.e. an LR parser must record partially recognised handles and when the right-hand side of a production rule is ‘recognised’, i.e. takes the form of a potential handle, the parser must determine whether to apply a reduction. This decision is based on the ‘following’ symbol in the current sentential form. As parsing proceeds, the input string is ‘read’ token by token and the LR parser can be reasoned about in terms of its ‘moving’ through a series of ‘states’. In general terms, each state corresponds to the set of partially recognised handles which have been ‘encountered’ at that point in the parse and which are currently ‘competing’ for reduction. As each token is ‘read’ the set of partially recognised handles changes and thus the corresponding state of the parser changes. To determine when a handle has been recognised the parser records the partially recognised handles of productions.





The less inquisitive reader will no doubt be relieved to learn that further detail regarding the recognition, recording and many other aspects of LR parsing are beyond the scope of this course!  For those with the stamina, the references given at the start of the course provide a basis for further study.



Summary and Conclusions



This is a rather ‘long’ lecture and inevitably contains quite a bit of detail. The fundamental and general notions that have been examined are ‘top-down’ (recursive descent) parsing, ‘Table-Driven’ LL1 parsing, ‘bottom-up’ parsing and LR parsing. LL parsing and LR parsing are both widely used techniques. The main ‘advantage’ of LR parsing is its inherent ability to ‘cope’ with languages whose grammars are not directly amenable to LL methods, i.e. without recourse to grammar transformations. The main advantage of LL, i.e. LL1 techniques, is (in the authors opinion) the elegance of both the technique used to develop the parser and its resulting structure. 



Now, we are not supposed (as scientists) to be concerned with rather ‘artistic’ notions such as ‘elegance’ but ask any (good) scientist how he or she ‘knows’ that they are on the right path when developing some solution to a problem (or that they have the ‘right’ solution) and they will tell you that the ‘model’, e.g. system of equations, collection of related abstractions, technique used, etc, they have developed has an elegance all of its own�.



Chris Harrison, October 1997

�Appendix A. 



A.1 YACC



YACC is a parser-generator available on UNIX systems. It takes, as input, a grammar specification in the form of production rules and it produces an LR parser, written in ‘C’, for the language defined by the grammar. 



The input to YACC consists of three sections delimited by %%



declarations

%%

productions

%%

supporting ‘C’ statements



The declarations component comprises two optional sub-components:-



1. “ordinary” ‘C’ declarations delimited by % { and %} for ‘objects’ in the send and third sections



2. Declarations of the terminal symbols (tokens) of the language that the parser must process



Productions



Production rules are specified in the form:-



A      :    B1...Bn;



‘A’ is the non-terminal on the left-hand side of the production. B1...Bn are zero or more non-terminal or terminal symbols. Productions may extend over more than one line (!) and are terminated with a semicolon. Alternative productions for the same terminal symbol are written as:-



A      :    B1...Bn;

       |    C1...Cm;



.....

       ;



The left-hand side of the first production is assumed to be the starting symbol unless otherwise explicitly specified. 



It is often (inevitably) necessary to include extra ‘C’ statements (or calls to compiled ‘C’ fragments) in the generated parser in order to support subsequent phases of compilation, i.e. to enable the parser to ‘drive’ the semantic checking and code generation phases. Such ‘C’ is usually enclosed in curly brackets and ‘added’ at some convenient position on the right-hand side of the production rules. 



Supporting ‘C’ statements in the last component consist of user-supplied ‘C’ fragments. A lexical analyser whose name must be ‘yylex()’ must also be provided. This may either be ‘hand-crafted’ or generated by Lex and referenced from this part of the YACC input (note that in this case terminal symbols/tokens must be common to both the Lex and YACC inputs). Other procedures, e.g. error handling, may also be included in this component.



Example



Grammar		E -> E + T | T

		T -> T*F | F

		F -> (E) | digit



YACC Input



%{

#include <ctype.h>

%}

%token DIGIT

%%

line	:	expr ‘`n’	{printf(“      d`n”, $1;}

expr	:	expr ‘+’ term	{$$ = $1 + $3;}

		| term

		;

term	:	term ‘*’ factor	{$$=$1 = $1 * $3;}

		| factor

		;

factor	:	‘(‘ expr ‘)’	{$$ = $2;}

		| DIGIT

		;

%%

yylex(){

        int c;

        c=getchar();

        if (isdigit(c)) {

                         yyval = c - ‘0’;

                         return DIGIT;

                        }

        return c;

}



Not all tokens need to be declared, e.g. YACC assumes that a quoted character is a terminal symbol, e.g. ‘+’ and ‘*’. The ‘C’ ‘code’ to evaluate the expressions appears in ‘{}’ after each production. In a ‘real’ compiler such ‘code’ might include calls to semantic checking routines and code generation routines. Such items, in the context of syntax directed translation, are termed semantic actions. The $$ symbol denotes the non-terminal on the left-hand side of the production, $I denotes the i’th symbol (terminal or non-terminal) on the right-hand side of the production, e.g. in the second production $$ refers to the expr (LHS), $1 to expr (RHS) and $3 to term. This ‘adds’ the values associated with the symbols on the right-hand side and assigns the result to the value associated with the symbol on the left-hand side. yylex() is a primitive lexical analysis routine written in ‘C’ which reads input characters one at a time using the standard ‘C’ function getchar(). IF the input character is a digit then its value is stored in the variable yyval and a token of type digit it returned to the parser, otherwise, the character itself is returned as the token type which causes a parse error.



�Appendix A2



Questions

 

1. Is the grammar below an s-grammar or a ‘full’ LL1 grammar. Justify your answer.



P1: S -> pX

P2: S -> qY

P3: X -> aXb

P4: X -> x

P5: Y -> aYd

P6: Y -> y



2. Using the grammar in 2) Show how the string ‘paaaxppp’ is parsed top-down and bottom-up



3. Explain why recursive descent parsers are LL1 parsers.



4. Eliminate left-recursion from the Newt language and write a recursive descent parser for the transformed grammar.



5. Explain why left recursion must be eliminated from a grammar if strings from the language defined by that grammar are to be parsed top-down. 



6. Explain the terms shift-reduce conflict and reduce-reduce conflict.



7. What does the statement “in LR parsing the derivation is constructed in reverse” mean ?



8. How is a right-sentential form generated and what property holds for the symbols to the right of the replaced non-terminal ?



9. Explain how a string of symbols identical to the right-hand side of a production rule and which have been found within a sentential form generated during a bottom-up parse may fail to be a handle.



10. Explain the purpose of a stack in table-driven LL1 parsing an LR/shift-reduce parsing.



11. If a type 2 grammar can only be recognised by a PDA, and a PDA has no stack, how can a recursive descent parser be used to parse string from the language defined by such a grammar ? (See later in this course!)



�Exercises



1. What is the difference between an s-grammar and an LL1 grammar and which kind is the grammar below (if any) ?



S -> “a” X | A “y”

X -> A “z” “a” | “b”

A -> “w” X “b”



Compute the FIRST and FOLLOW sets for the three non-terminals. Construct an LL1 parsing table for this grammar.



2. Given the grammar:-



P1: S -> “a” A B “e”

P2: A -> A “b” “c” | “b”

P3: B -> “d”



and the string:-



‘abbcde’



show, in general terms, how the string is parsed in a top-down and a bottom-up manner.



3. Transform the grammar below into an LL1 form:-



prog  -> “var” decl “;” stmt “.”

decl  -> decl “,” vname | vname

stmt  -> vname “:=“ digit

vname -> “x” | “y” | “z”

digit -> “0” | “1”



Calculate the FIRST and FOLLOW sets for the transformed grammar and construct the LL1 parsing table.



Use the parsing table and the LL1 algorithm to parse the following string:-



var x, y;

x:= 0.



4. Define the FIRST and FOLLOW sets and calculate them for the following grammar:-



S -> Aa

A -> bB | Cd

B -> ef

C -> aa | e



Use the sets as the basis for the construction of a recursive descent parser for the grammar. You may assume the existence of a procedure get_lexeme which supplies the next lexeme from the input stream and a procedure check_lexeme which returns the Boolean value true if its argument has a value which is a valid value at that point in then parse, otherwise check_lexeme returns the Boolean value false. Illustrate the sequence of procedure calls and returns made by this parser when parsing the string below:-



‘da’



For left-recursive productions, i.e. those of the form X -> a | Xb what can be said about FIRST(a) and FIRST(Xb) ? Use this observation to explain why left-recursive productions cannot be parsed by LL1 methods like recursive descent.



5. Given the Newt program below and assuming that a recursive descent parser is available as the front-end of some compiler, write down the sequence of procedure calls and returns made by the parser when it processes the program shown below. What assumptions have been made about the parser and the naming of the parsing procedures ? Draw the parse tree for the program and explain the relationship between the action of the recursive descent parser and the construction of the parse tree.



var x, y;

begin

  x:=10;

  y:=x;

  z:=3+2;

end.



6. The following grammar defines an LL! language in which type declarations may be written. 



1. T -> S

2. T -> “^” “ident”

3. T -> “ARRAY” “[“ STLIST “]” “OF” T

4. S -> “ident”

5. S -> “const” “..” “const”

6. SLIST -> S X

7. X -> “,” S X

8. X -> e



Note: T is the starting symbol



The LL1 parsing table for this language is:-



            “CONST”  “IDENT”  “^”  “,”  “[“  “]”  “ARRAY”  “OF”  $

T           1        1        2                   3

S           5                

SLIST       6        6

X                                  7         8                   8



Note: the numbers in the table refer to the production rules.



a) Define the FIRST and FOLLOW sets and calculate them for the above grammar

b) Outline the LL1 parsing algorithm

c) Explain how the parse table is constructed - be careful to explain why the productions occupy the places in the table above

d) Show the steps taken by an LL1 parser when parsing the following string:-



ARRAY[IDENT1, IDENT2] OF ^IDENT3

� The very notion of a pattern is fundamental to a science, indeed, mathematics is concerned exclusively with ‘patterns’, e.g. the pattern that is the integers, the pattern that is a logic, etc.  

� The reverse is, of course, not necessarily true.

� We must ask ourselves what the ‘goal’ in the syntactic design of a (programming) language really is in order to convince ourselves of the necessity to indulge in the enormous overhead of creating the parse table associated with an LR parser for a typical (programming) language. If our goal is to arrive at a syntax which is inherently regular then we should, as it were, strive for LL1-ness and in doing so gain the advantage of being able to construct a parser with very little overhead indeed. If we forsake LL1-ness, an unfortunate but in some cases unavoidable circumstance, then we are at liberty to exploit the more expressive forms associated with LR grammars!      

� Quantum mechanics can be used to explain directly some phenomena which cannot be explained direcly using earlier notions. When used to reason about ‘things’ at very small scales (but very high energies) indeed, the resulting ‘families’ of elementary particles were initially small in number and had few members. Of late, the sheer number of different kinds of particle and the increasing number of families of particle have led some to believe that the lack of an elegant ‘structure’ by which they can be organised and reasoned about is a ‘bad thing’. Of course, someone who could figure out such a model might get a Nobel prize for Physics - good luck!   
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