UNIVERSITY OF MANCHESTER I
NSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Lecture 5. Name and Property List Management

During compilation information about identifiers must be maintained, e.g. their type, name, the scope in which their declaration occurs, the storage they are to be allocated etc. During lexical analysis identifiers are ‘recognised’ and a ‘token’ is substituted which, typically, associates together two pieces of information, i.e. the kind (an identifier token) and a value (the characters that form the identifier’s name).

The choice of an appropriate data structure to ‘hold’ such information is problematic for at least three reasons:-

1. 	Identifiers may be of arbitrary length.

2. 	An identifier may appear many times in the source description.

3. 	The bulk of the text in the source description of a program written in a high level
language
 consists 	of reserved words and identifiers, i.e. there will be a large number of identifiers.

As we have seen, a data structure termed a name list or symbol table is usually implemented as a mapping from some value associated with an identifier’s token to a symbol table entry for that identifier. During lexical analysis (or alternatively during syntax analysis) the characters that form the identifier’s name are ‘stored’ in the name list and each time an identifier is encountered the symbol table is checked to determine if an entry exists for that identifier - if no entry can be found then a ‘new’ one must be created. Clearly, the data structure used to realise the symbol table must be both space and time efficient or the compilation process will be ‘slowed’ considerably.

During the semantic analysis phase, type information associated with each identifier becomes available as declarations are processed and this information is placed in a property list which is linked to the symbol table entries. During the code generation phase this same information held in the property list/symbol table is used to determine the allocation of storage to identifiers.

5.1
Name Lists

The various stages of compilation make different uses of the symbol table and the property list. Given a simple program written in a language with a Pascal-like syntax, e.g.:-

PROGRAM simple;

 VAR a, b: integer;

 c : Boolean;

BEGIN

 a:=1;

 b:=a + 2;

 c:=true

END.

the lexical analyser would generate the following sequence of tokens (lexemes):-

sym_program, sym_id, sym_semi_colon, sym_var, sym_id, sym_comma, sym_id, etc.

When an identifier is encountered, e.g. the identifier ‘a’, the lexical analyser can call a procedure to inspect the symbol table for an entry for that identifier. In the case of ‘a’ in the declaration of the variable in the program above no such entry will be present and a ‘new’ entry must be made. Later, when the lexical analyser encounters the identifier ‘a’ in the assignment statement a:=1; an entry will be found for ‘a’ and a reference to the entry is returned and ‘stored’ in the sym_id lexeme to represent the second
occurrence
 of the identifier ‘a’. During semantic analysis, declarations are ‘processed’ in the sense that when ‘a’ is encountered it’s symbol table entry will examined and made to reference a property entry which indicates the type of ‘a’, i.e. an integer. Later still, when processing the assignment statement a:=1; the symbol table will again be examined to determine if the value of the expression in the assignment statement is compatible with the identifier’s declared type. When ‘code’ is generated the information held in the name list and property list is used to allocate storage in memory for the values of variables�.

5.2 Data Structures for Name Lists

Three common data structures provide a means of representing values associated with a name list, i.e.

1. A list.

2. A tree.

3. A hash table.

Clearly a list structure will have a search time proportional to the number of entries, a binary tree will have a search time proportional to the log of the number of entries.

A hash table provides a direct mapping from an value to an associated entry. Typically, the characters that form an identifier are used to compute a ‘hash value’ which is in turn used to index a hash table. A simple hash function sums the ordinal values of characters in an identifier’s name and divides the result by the number of entries in the hash table, e.g.

 FUNCTION hash(s: string; table_size: natural): natural;

 VAR i : natural;

 sum: natural;

 BEGIN

 sum:=0;

 FOR i:=1 TO length(s) DO sum:=sum+ord(s[i]);

 IF table size = 0 THEN hash:=1

 ELSE hash:=sum DIV table_size

 END;

Unfortunately, a hash function capable of computing unique values for all possible identifier names would generate a very large (and sparsely populated) table, thus, as in practice a hash table must only be of modest size some provision must be made for so-called ‘collisions’, i.e. different identifier names causing the computation of the same hash value.

A variety of ‘hybrid’ approaches to realising a hash table are also possible, e.g. a hash table with so-called ‘chaining’, i.e. entries in the hash table are references to lists of names. In such an organisation the value returned by the hash function is the same for a set of identifiers.

�

�5.3 Property Lists

As each declaration in some source description is encountered, information about the nature (or property information) of each identifier can be determined. Such information includes the class of the identifier (e.g. constant, type, variable, procedure, field in a record, etc) and also other information (e.g. the structure of a type, the type of a variable, a constant’s value, etc). This same information is used during semantic analysis (or semantic checking) when statements which manipulate those declared “objects” must be type checked (and the “objects” themselves declared before they are used), and during code generation when the allocation of storage for constants and variables must be determined. This information is usually stored in a property list referenced by the identifier’s symbol table entry.

In block structured languages, e.g. Pascal, Modula-’s, Ada etc, the same name may appear at different levels of scope and constants, variables and types which are not declared in a given procedure may be accessed non-locally from a procedure. One basis for managing such an organisation is the notion of “textual level”.

5.3.1 Textual Level

The “textual level” of an identifier is directly related to the number of procedures (or equivalent abstraction mechanisms) that textually “surround” the declaration of that identifier, i.e. the context in which the declaration occurs.

PROGRAM example;

 VAR x: integer;

 y: integer;

 z: integer;

 PROCEDURE p(VAR x: integer);

 VAR xx: integer;

 y : integer;

 BEGIN

 ...

 END;

 PROCEDURE q(VAR n: integer; VAR y: integer);

 VAR a: integer;

 b : integer;

 yy : integer;

 z : integer;

 BEGIN

 (the namelist is given at this point)

 ..

 END;

BEGIN

 ...

END.

Identifiers at Textual Level 0:		example

Identifiers at Textual Level 1:		within program example: p, q, x, y, z

Identifiers at Textual Level 2:		within procedure p: 	x, y, xx

						within procedure q: n, y, a, b, yy, z

At any point in the source description only one set of local declarations is in use (although variables etc. which are
declared
 in enclosing scopes are also
accessible
), thus, within procedure q the only variables at textual level 2 are n, y, a, b, yy and z�. The notion of textual level has important implications for the structure of the name and property lists.

5.3.2 Block-Structured Property Lists

The scope rules of block-structured languages allow a given name to be used at different textual levels to refer to different “objects” and this results in a number of property entries being associated with a single identifier in the name list. During semantic checking the textual level of each procedure (abstraction) is determined in order that its declarations, when processed, are associated with a “new” property entry for each identifier and linked to the name list entry (after checking that no entry already exists at that textual level). Once this processing is completed the use of identifiers in statements can be checked for type compatibility etc. When a complete procedure abstraction has been processed the compiler “discards” the property entries associated with the locally declared names.

Given the example program above, when the declarations of procedure p are processed, property list entries are added for local identifiers and subsequently p’s statements will be checked to determine if an identifier’s used have been declared and that their use is consistent with their type. Once all p’s statements have been checked the property list associated with p’s local variables is discarded since it has no
relevance
 “outside” the scope of p. The semantic checker will then commence the checking of procedure q.

In the scheme shown below, the name list entry for a given name references a chain of property entries that are valid for the name at different textual levels.

PROGRAM simple;

 VAR a: real;

 PROCEDURE p(a: integer; b: integer);

 TYPE subrange = 0..100;

 (name and properties shown at this point)

 BEGIN

 ...

 END:

BEGIN

 ...

END.

�

The property entry
 also has a reference
“back
”
 to its name list entry. All of the property entries of a given procedure are
“linked
”
 together
 to enable identifiers of that procedure to be discarded
“en-masse
”
 and procedures/functions
 have a link to the property entry
in the procedure/function or p
rogram in which they are declared.
These additional
“links
” are shown below:-

�
Thus, a property list entry contains
 at least the
fol
lowing
:-

1)	
Identifier properties

2)	
Link
 to name list entry

3)
	
Link to
“previous
”
 property list entry of the same name

4)	
Link to

“
next
”
 property list entry for
“next
”
 identifier in the owning procedure

The steps associated with adding identifier properties are:-

1)
	
Compute its hash value

2
)
	
Search alon
g
 its has
“
chain
”
 to
find
 the identifier
’
s name

3a)	
If the name is found and the current properties of the name are at a lower textual level,

	then add a property entry for the identifier

3
b)	If the name is not found, add a new name list entry to the hash
“
chain
”
 and
“link
”

	a new property entry to it
.

5.3.3 Property List Entries

Each identifier name used in a program has a property list entry which may take one of thr
ee forms:-

a)
Property entries:

These define the
(syntactic)
class or category
 that the name refers to, e.g. constants, type, variable, procedure
/function etc and the associated information. A reference is also maintained to the corres
ponding type entry and the textual level of the declaration. The different categories are:

1)
	
Reference (pointer) to type entry, i.e. to information defining the identifier
’s type

2)
	Textual level

3)	
Ca
tegory
of name

		Type: no additional information stored in property entry

		Constant: it
’
s value

	
	
Va
riable:

			Address (added during code generation)

	
	Parameter:
 it
’
s address, kind (passed by reference or value
)

	

		Field (of a record structure)
: it
’
s address, reference (pointer) to the type of the
“owning
” record

		Program,

		Procedure,

		
Function
:

			Pre-defined: indication of which pre-defined procedure/function

	
		User-defined:
	
Address (of first instruction), references (pointers) to parameter
						
properties,
 reference (pointer) to properties of objects declared

	
				in that abstraction

b) Type entries
:

The define the type
’
s structure and may be pre- or user-defined, i.e. for pre-defined types the kind of the ty
pe is held in the entry
, for user defined composite (structured) types references (pointers) to the componen
t type(s)
are stored.

1)	
Size of type (in words or bytes)

2)
	Category of type:

		
Scalar: Kind of type (additional information for enumerated types)

		
Subrange: Reference (pointer) to range type, minimum and maximum values

	
	
pointer,

		file,

		
set: reference (pointer) to element type

		
array: reference (pointer) to
range
 type, reference (pointer) to
domain type

		
record: references (pointers) to type entries for field(s)

c)
Lab
el entries:

Information about labels (see later lecture on semantic analysis):

	
Label number,
address of label, reference (pointer) to next label

Thus, for the program
‘
simple
’
 above
,
 simplified versions of the property entries are:-

s
imple

	reference to type: nil (identifiers representing program names have no type)

	
textual level: 0

	user-defined

	
address: of first instruction

a

	textual level: 1

	
reference to type: reference to type entry (pre-defined) relating to
‘real
s
’

	category: variable

	
address: storage location of variable (see later lecture)

p	

	reference to type: nil (identifiers representing procedure names have no type)

	textual level: 1

	user defined

	
address: of
first
 instruction

a

	reference to type: reference to type entry (pre-defined) relating to integers

	textual level: 2

	category: variable

	
address: storage location of variable

b

	
reference to type: reference to

type entry (pre-defined) relating to integers

	textual level: 2

	category: variable

	
address: storage location of variable

subrange

	
reference to type: reference to

type entry
defining this user-defined type

	textual level: 2

	category:
type

d) Type En
tries

Real

Size
: 32
 bits

Category: Scalar, standard (pre-defined) type real

Integer

Size: 32 bits

Category: Scalar
, standard (pre-defined) type, integer

subrange

Size: 8 bits

C
ategory: subrange

Refrence to
range type: reference to entry for integer

Minimum range value: 1

Maximum range value: 100

Summary and Conclusions.

This lecture
 has described how name and property lists may be organised in a compiler for a block-stru
ctured
 (imperative) programming language.
The examples show
the
kinds of information stored in such structures
and how this information is used during various phases of the compilation process.
A variety of al
ternative
and
 techniques may be used depending upon the
“style
”
 of language to be supported.

Chris
 Harrison, November 1997.

	

					

	
	

� The size allocated will vary depending upon the types supported by the programming language and also the machine upon which the ‘code’ executes. In so-called high-level languages which permit programmers to make decisions about the allocation of actual storage you may even be able to specify the kind of storage to be used!

� Variables in the global scope, i.e. x and y, are also accessible in p and q because the global scope encloses p and q. However, the declaration of z in q “masks” the global declaration of z and the same is true of q’s parameter y. q’s parameter y is completely unrelated to the
locally
 declared variable y in p.

CT206 Languages and their Implementation Ver. 0.1 Chris Harrison 1997	Page � PAGE �
6
�

