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Lecture 6. Semantic Analysis



Semantic analysis spans the end of the analysis phases of compilation and the beginning of the synthesis phases, i.e. it is concerned, first, with determining the static semantics of a source description and, secondly, (depending upon the actual organisation chosen for the compiler’s implementation) with generating some form of intermediate representation of the source description, e.g. a parse tree.



Two classes of programming language construct must be semantically analysed, i.e. declarative statements (declarations of types, variables, procedures) and imperative statements (the application of operations to declared entities. The majority of modern programming languages enforce the notion of explicit definition, i.e. declaration before use, whereas older languages do not (so-called implicit definition) and thus require attributes of entities to be deduced from the context of their use.



During semantic checking, information relating to entities in a source description is gathered from the declarative statements and is stored in the symbol table and property list data structure, e.g. a hash table with name list “chains” and property list “chains”. This information can then be used to make semantic checks on other declarative statements and also on imperative statements.



6.1 The Grammatical Nature of Language “Rules”



It is possible to construct a grammar such that it enforces the notions of “definition before use” and “strong typing”. The advantage of such a grammar is that it enables a considerable amount of checking to be done during syntax analysis, however, such grammars are Type 1 (context sensitive) grammars (in Chomsky’s hierarchy) and, in general, such grammars are very difficult to parse. A practical alternative is construct Type 2 (context free) grammars for which well defined parsing techniques are known and to incorporate “checks” in the non-context free components of the language as semantic checks.



6.2 Declarative Processing



Declarative processing typically involves checking that identifiers have a single (unique) meaning, i.e. are only declared once at the same textual level (scope) and creating property list entries for each declared object (constant, type, variable, procedure etc). 



In the Pascal language there are five different “forms” of declaration:-



1.	Label declarations�		



Label numbers are identified as constants by the lexical analysers and thus will have no entry in the name list. In the semantic analysis phase the numbers are identified as labels and a check is made to ensure that the label has not already been declared at the current textual level. If the compiler is to generate assembly language as its output (or alternatively an intermediate representation for a code generator, e.g. Pcode) then labels are referred to by label identifiers (see later lecture) and thus the compiler allocates a unique identifier for the label. If the compiler is to generate “machine code” (or its equivalent) then the property entry of the label will contain the memory address of the label, i.e. the address of the instruction being “branched to”. Initially, the label address is unknown, i.e. it is unknown before the statement with the label has been encountered by the compiler) and any references made to the label before it’s definition (during code generation) are maintained by the compiler in a list. Once the destination address is known, the list is used to “place” this address into all the goto statements that branch there (ouch!).

 

�2. 	Constant declarations



A constant identifier must be unique within its textual level of declaration. Once this has been determined, it’s property entry can be updated with its type and value.

 

3. 	Type declarations



The property list entry for a type identifier (as we have seen) contains a reference (pointer) to an entry defining the structure of the type. Such an entry hold information about the kind of type, e.g. enumeration, subrange, record, array, etc) and additional information depending upon the kind of the type, for example, an entry of type array will contain information about the range and domain types, an entry of type record will contain information about the types of its fields. Once component types of the type have been processed, the “size” of the type can be determined.  



4.	Variable Declarations



After ensuring uniqueness at its textual level of declaration and then processing it’s type declaration, the property entry for variable’s identifier is updated, i.e. a reference (pointer) within the property entry is made to refer to the property list entry for the type, and storage can then be allocated for the variable within the stack frame of the procedure currently being compiled (see later lecture). This involves calculating the “displacement” of the variable within the procedure’s stack frame by examining the space allocated so far within the stack frame and updating the value representing the total amount of allocated space.�





5. 	Program and procedure/function declarations� 	



The property list entry for the identifier is updated with details relating to the kind of identifier, i.e. procedure, function, program  (possibly module), the number of, and types of, it’s parameters, (for functions their result type) and, when generating “machine code”, the procedure or function’s “entry address”.



As a procedure heading indicates the start of a “new” textual level, once the statements in the “body” of the procedure have been semantically checked, the property entries associated with the procedure’s local variables must be “removed”, e.g. by “linking” together the property entries at the current textual level.



After processing of the procedure’s declarations, checks can be made on entities with partial definitions, e.g. FORWARD declarations, types used in pointer declarations (where definition before use is “relaxed”), etc. For FORWARD declarations the compiler maintains a list of “calls” to the procedure prior to encountering it’s definition and this list can subsequently be used to “place” the entry address when the procedure is encountered and code is generated for it.



  











     







	

 

6.3 A Simple Example: Declarative Processing in Newt



The Newt language (from earlier exercises) has just two semantic rules - definition before use (for identifiers) and unique identifier declarations. Given some symbol table implementation, identifiers are entered into the table via a call to some operation, e.g. insert_into_table(“x”), with no need for a property list, thus symbol table entries contain the identifier name and a Boolean value denoting if the identifier has been declared or not, e.g.



TYPE symbol_table = MAPPING string TO entry;



     reference    = ^ entry;



     entry        = RECORD

                       value      : string;

                       is_declared: Boolean

                    END;

 



When an identifier is recognised (by the lexical analyser) the symbol table is checked to see if an entry for that identifier exists. If so, then a reference (pointer) to the entry is returned and stored as the identifier’s token value. If not, then a “new” entry is created and a reference (pointer) is returned. 



Semantic checking of identifier declarations is implemented by a call to a procedure which examines the symbol table to determine if the entries Boolean value denotes an existing declaration - if so (i.e. is_declared has the Boolean value true) then a semantic error has been encountered, otherwise the value is set to true.    



6.4 Imperative Processing



For the Pascal language a variety of semantic checks are applied to imperative statements, e.g.



1.	Every identifier used in an imperative statement must have a declaration and will be a member of one 	of the following “kinds” :- variable, parameter, function or procedure, constant or (eek!) label.



2.	Every identifier must be used in a semantically meaningful manner, e.g. constant and 	procedure/function names must not occur on the left-hand side of assignment statements, 

	procedure names must not appear in expressions, etc.



3.	Types associated with entities in assignment statements must be compatible�



4.	Operand’s types must be compatible with operators applied



The above are simple examples - many other checks will also be applied.

�6.4.1 A Simple Example: Imperative Processing for Newt



In Newt, semantic checking of imperative statements involves simply ensuring that all variables have a declaration, thus, each parsing procedure for a production rule relating to an imperative statement, e.g. statement, involves checking that the is_declared field has the Boolean value true, i.e. if it has the Boolean value false then a semantic error has been encountered. 



6.5 Intermediate Representations of Source Descriptions



The interface between the front and back ends of a compiler reflect the separation of concerns relating to the analysis and synthesis phases, and its form affects how and when semantic checking is performed. Three main alternative organisations can be identified:-



1.	Calls the semantic checking and code generation procedures are made from within the parser, i.e. 	there is no well-defined interface between the front and back ends of the compiler



2.	The parser calls procedures which construct a parse tree from the parse history. The semantic and 	code generation procedures use this data structure as their input.



3.	Calls are made from within the parser to semantic checking and intermediate code generation 	routines. The intermediate code is later translated into the “target” machine code.



In each of these schemes the same logical activities are undertaken - it is simply the organisation of the compiler that differs. The send and third alternatives differ from the first in that both involve intermediate representations of the source description, in the case of the former, in terms of the parse tree, in the case of the latter in terms of intermediate code. We will assume here that a parse tree has been constructed as the intermediate representation and that semantic checking and code generation is based upon the parse tree representation.	



6.5.1 Tree-based Intermediate Representations Of A Source Description 



Parse trees can be constructed directly from the parse history which forms the output of a parsing algorithm. A top-down parser constructs the parse tree (as its name suggests) from the root to the leaves (conversely for a bottom-up parser). The process of parse tree construction can be shown in a simple form for the language of expressions:-



A -> id := E

E -> id + id

E -> (E)

E -> -E



and from the string:-



c:= - (a + b) 



where a, b and c are identifiers (ids). A top down parser would derive this string as:-



1.	A => id := E

2.	=> id := -E

3.	=> id := - (E)

4.	=> id := - (id + id)



and the parse tree would be constructed in the following sequence:-				�





The derivation sequence for a bottom up parse would be:-



1.	is => - (id + id)

2.	id := - ( E )

3.	id := - E

4.	id := E

5.	A



It is left as an exercise to construct the show the corresponding parse tree growth.



In a parse tree, the non-leaf nodes are non-terminals and the leaf nodes are terminals. Some of the leaf nodes will contain extra information (annotations) supplied by the lexical analyser, e.g. identifier’s nodes may contain a reference (pointer) to the symbol table entry for the name.



For a recursive descent based compiler, code is added to each parse procedure in order to build the parse tree. However, for LL and LR based compilers only a small change to the parsing algorithm (which is independent of the grammar) enables parse trees to be constructed. Semantic analysis is equivalent to “walks” of these parse trees.



6.5.2 Syntax Trees



A parse tree contains information which is of no use to the semantic analyser and the code generator, thus, rather than generate a parse tree a parser creates a data structure termed a syntax tree which contains only that information needed for semantic analysis and code generation. The syntax tree for the string in the previous example is shown below:-



�



Thus, a syntax tree is an abbreviated form of a parse tree - in the example above expressions imply have a node for each operator (internal) and operand (leaf). Some of the terminals have been removed, i.e. parentheses or brackets) as the structure of the syntax tree represents the correct precedence. 



In more modern software development environments the parse tree (rather than a syntax tree) is constructed in order to support structure (syntax directed) editing, “pretty printing”, cross-reference aids, graphical interfaces etc. and the parse tree is operated upon directly by such facilities.



6.6 The Interface Between Parsing and Semantic Analysis



Consider, next, how semantic checks can be incorporated into a compiler by systematically adding semantic information to the grammar rules of the language. Such information is “attached” to the nodes parse or syntax tree.



When semantic analysis commences, only the leaf nodes have such semantic attributes attached, e.g. identifiers, constant values, types etc), e.g. for the expression z:= 5 * x + w * y



�



During lexical analysis some of the attributes of the leaf nodes will be identified, e.g. the attribute associated with an identifier is a reference (pointer) to it’s symbol table entry, for a constant the attribute is its value. During the semantic processing of the declaration’s property list entries defining the type etc are added to the symbol table/property list data structure.



Once the semantic information has bee identified for the leaf nodes it can be propagated though the tree as  basis for realising semantic checking. In the example shown above, the availability of the leaf node attributes makes it possible to check the validly of the multiplication w * y, i.e. to check it’s type compatibility, and also to determine the result type. Similarly the other multiplication and hence the type compatibility of the operands of the addition etc. When the propagation and static checking are complete the finished tree is said to be decorated and contains sufficient information for code generation to occur.



6.6.1 Syntax Directed Translation



The conventional grammar rules which define a language can be augmented with additional information and rules which can be used as a basis for controlling the semantic checking and code generation phases - such a modified grammar is termed an attribute grammar.



Each grammar symbol has am set of associated attributes which, typically, represent the properties of the grammar symbol, e.g. the type of variables, the value of constants, memory locations allocated to (data) objects etc.



The value of the semantic attributes can be computed from semantic rules (or actions) which are associated with the production rules. Thus, for example, during compilation the evaluation of semantic rules may cause property information to be stored in the name list, type checks to be invoked, code to be generated etc., i.e. semantic actions can implement other forms of processing than semantic checking. 



The choice of attributes and semantic actions is a design decision on the part of the compiler writer and is based upon considerations such as semantic processing/code generation characteristic of the language to be compiled and also the “ease” with which it can be implemented.



Consider the following (simple) example:-



digit -> 0 | 1 | ... | 9

integer -> digit | integer digit



The definition of digit can be augmented with an attribute value and the definition of integer must then be augmented with a value attribute and a rule describing how the attribute is computed, e.g.



Augmented Grammar



digit -> 0				{digit.value = 0}

| 1						{digit.value = 1}

...

| 9						(digit.value = 9}

integer1 -> digit			{integer1 = digit.value}

            | integer2 = digit	{integer1 .value = integer2 .value * 10 + digit.value}



The semantic rules appear in {} and the notation X.a denotes the attribute “a” associated with the grammar symbol X. Subscripts are used to distinguish between different instances of the same non-terminal symbol, i.e. to attach the appropriate attribute value to a given instance of a non-terminal symbol. 



The augmented grammar enables strings of digits to be constructed and a meaning to be associated with each string, i.e. the decimal value of the number. The value is constructed from the values of each individual digit, i.e. each time we apply the rule integer -> integer digit we are adding another (more arithmetically significant) digit and hence a factor of 10 in the associated semantic action. In the example below, the string 123 and its value are constructed:-



�



A parse or syntax tree for source description can similarly be constructed with the semantic attributes added at each node, hence the terms decorated or annotated tree. In such an organisation, each grammar symbol (node) is represented by a record (Cartesian product) and the attributes of the symbol are stored in the fields of the record. The value of the attributes of each node is defined by a semantic rule associated with the production “used” at that node.



6.6.2 Synthesised and Inherited Attributes



Attributes may be synthesised or inherited, i.e. if the value of an attribute at the node of a parse tree is calculated from the values of its child’s nodes it is synthesised - values are “passed up” the parse tree. This is analogous to saying that the values of attributes of non-terminal symbols on the left-hand sides of productions are derived from the values of attributes of the symbols on the right-hand side of the production. Thus, for the general production:-



X -> Y1 Y2 ... Yn 

	

the semantic rule for each of X’s attributes “a” are of the form:-



X.a = f(Y1 .a, Y2 .a, ... Yn .a)



where “f” is a function�.



The values of the inherited attributes of a grammar symbol are determined from the values of the attribute’s at the parent or sibling nodes of the parse tree, i.e. information is “passed down” the parse tree. In terms of production rules, the values of attributes on the right-hand side of productions are written in terms of the values on both the left-hand side and/or other attributes on the right-hand side. Thus, for the production rule above, the semantic rule for inherited attributes takes the form:



Yk .a = f(X.a, Y1 .a, Y2 .a, ... Yk - 1 .a, Yk + 1 .a, ... Yn .a)





6.6.3 Attribute Grammars as a Basis for Semantic Checking



In the example below, the grammar permits variables to be declared and integer (values) to be assigned to such variables. The semantic attributes and rules used to build a name list storing all such declared variables and to check the variables used in assignment statements have been declared  can be organised as follows:-



Assume the existence of two functions the first of which adds the variable name (found in the declaration) to the name list list, i.e. add_list(name, list) and the second of which checks the variable name is in the name list (has been declared), i.e. check(name, list).



Annotated Grammar



1. P -> DS					{S.dl = D.dl}



2. D1  -> var V; D2 				{D1  .dl = add_list(V.name, D2  .dl }

		| e					{D1  .dl = nil}



3. S1  -> V:=digit ;  S2 			{check(V.name, S1  .dl) ; S2  .dl = S1  .dl ;

							 V .value = digit.value}

		| e					

	



4. V -> a					{V.name = ‘a’}

		| b					{V.name = ‘b’}

		| c					{V.name = ‘c’}



5. digit -> 0					{digit.value = 0}

		   | 1					{digit.value = 1}

		   ...

		   | 9					{digit.value = 9}



In the above example, P is the starting symbol of the grammar, name and value attributes are associated with variables and list attributes are associated with declarations and statements.



D.dl is a synthesised attribute since it is built up from the lower levels of the parse tree (i.e. from the subtrees associated with declarations). S.dl is an inherited attribute since, once it has been assigned to, it is “passed on down” the parse tree for use in the checking of variables in assignment statements. The semantic rule associated with non-terminal P simply says that once we have constructed a list of declared names (D.dl - the attribute associated with D) then it can be assigned to the attribute associated with S (the list of names that can be “legally” used within the statements of the program�.



Given the example “program”:-





var a;

var b;

a:= 0;

b:= 1;



The corresponding decorated parse tree is:-



�



Note that all attributes are not shown to simplify the above diagram. 



In atop down parse, the subtree for D will be constructed first followed by a list of all variables that have been declared using the semantic rule associated with production 2 which states that the declaration list dl associated with the left-hand side non-terminal D1 is constructed from the current variable name and the list associated with the subtree D2. Thus the list of declared variable is synthesised from the declarations at lower levels of this tree.



Example:-



In the uppermost D node in the above diagram plays the role of D1 (the instance of D on the left-hand side of the production rule). The declaration list associated with this node is a combination of the list associated with it’s child node D (containing the name b) and the name associated with it’s child node V (in this case a). Hence, the list associated with D1 is {a, b}.



Once the complete set of declarations has been parsed, all the variable names that have been encountered are in the list D.dl and the attribute S.dl is then set to equal D.dl (in the semantic action for P) before the statements of the program are parsed. S.dl is an inherited attribute which is passed down the parse tree allowing all the variables in all the statements to be checked against the full list of declared variables via the first semantic action associated with production 3. The second semantic rule associated with this production causes the declaration list to be further passed down the parse tree.



The order in which the tree is walked is important, e.g. the inherited attribute S.dl depends upon the synthesised attribute D.dl thus it is vital the semantic rules associated with the subtree for D.dl are evaluated before those for S.dl. 



The method for deciding upon the order of rule evaluation is beyond the scope of this course (see the associated texts).



Summary and Conclusions



This lecture has examined the process termed semantic analysis in both theoretic and practical terms. The notions of a parse (derivation) or syntax tree have been shown to be the basis for systematic approaches to organising semantic analysis based on sound theoretical foundations. The examples used, whilst simplifications for the purposes of explaining the underlying concept(s), show how semantic checking can be performed on strings written in “programming” languages.



Chris Harrison, November 1997. 



�



Exercises:-





1. Consider the simple grammar below for binary arithmetic expressions involving variables
 and assignments:-




prog -> dlist slist


dlist -> 
e
 | decl ; dlist


decl -> VAR var


var -> a | b | c


slist -> stmt | slist ; 
stmt



stmt -> var := expr


expr -> term | expr + term | expr - term


term -> int (modified production)


int -> digit | int digit


digit -> 0 | 1




Annotate the grammar to build a list of declarations, check that variables are declared be
fore use and evaluate expressions. Draw the annotated parse tree 
for
 the string:-




var a;


var b;


a:= 10;


b:= 11 - 1 - 1;




2
. Consider the Newt program shown below. Show where and when information is added to the s
ymbol table and semantic checks occur. For any semantic errors in the program, identifey w
here and when they are d
iscovered. 
(
You 
may
 need to refer to your answers to earlier exercises as well as material
 in this lecture not
e
.
)





var x, y;


begin


  x:= 10;


  y:= x;


  z:=3 + 2;


e
nd.






3. Consider the following grammar which defines programs as having a declaration part in w
hich single letter identifiers
 are declared as integers or characters, and a set of statements which allow digits (0..9)
 or lett
ers
 to be assigned to identifiers. Associated with the grammar are two semantic rules:-




∆	Identifiers 
appearing in statements must be declared before use


∆ 	
There must be type compatibility between the two 
“
sides
”
 of an assignment statement





PROG -> 
DESC 
; begin STMTS end


DECS -> id 
: IDTYPE NEWDECS


ID
TYPE -> int | char


NEWDECS ->
 , DECS |
 e



STMTS -> -> ST NEWSTMTS


NEWSTMTS
 -> ; STMTS |
 e
 


 
ST -> id REMAINDER


REMAINDER -> 
digit | 
‘
letter
’





A
nnoatte the grammar with attributes and acti
ons to enable a list of declared variables and their types to be constructed
, and then statements 
to be checked for identifier declaration and type compatibility in assignm
ent
. State whether the attributes are synthesised or inherited.




Draw th
e parse tree for the program below and annotate it with appropriate attributes.





a
: int;


b: char;

c: int;

begin


  a:= 3;

  b:= 
‘
z
’
;


  c:=7;


end





Write a recursive descent parser for the grammar and show how the semantic attributes and 
actions that appe
ar in the attribute grammar above are implemented in the parser.




Note:




The list of identifiers which is constructed is the symbol table and some semantic actions
 relate toi inserting or checking entries in the symbol table. Sematic attributes are usua
lly passed as parameters betwee
n routines, or are global variables. For example, IDTYPE will have an attribute IDTYPE.typ
e which will depend upon whether int or char has been recognised. The attribute must be pa
ssed back to the ro
utine which parses DECS so that the symbol table entry for an ID can be updated with it
’s type.






		  





    

   







    



 













 



   



        



� An “abberation” of the language’s design incorporated to encourage FORTRAN users (amongst others) to “convert” to the language!

� Parameter declarations are similarly handled.



� Possibly also module declarations for a “modular” Pascal.

� Some limited (i.e. well-defined) forms of type coercion are permitted in Pascal (see the language’s definition) unlike some other languages where an ad-hoc approach is permitted. The code-generator will to place “conversion” code appropriately in the executable representation since the internal representations of different types will itself differ.  

� Note that the attribute value in the example in the previous section is a synthesised attribute.

� Note how an attribute grammar embodies a declarative style, i.e. it is not concerned with how the attributes and actions are implemented. In an implementation of a compiler based upon the above attribute grammar, the list of declared variables is simply the symbol table (which will be accessible to the whole “program”), i.e. it will not be necessary to implement the semantic action S.dl = D.dl. However, it is important to include it in the attribute grammar in order to specify the relationship between attributes.
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