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The synthesis phases of a compiler are responsible for code generation and code optimisation. As the code generated is intended to be executed on some “machine” it is difficult to separate the nature of the code produced from the organisation of the machine upon which it is to be executed. Thus, this lecture will consider, first, the architecture of a particular member of widely used “
family
” of microprocessors, i.e. the Motorola 68000�. Secondly, the relationship between high-level language constructs and low-level code sequences, i.e. sequences of assembly language instructions, will be examined, in particular the locations in which variables are stored in memory and the organisation of the run-time stack.



7.1 A Classification of Instruction Sets.



Microprocessors (as you should know) can be broadly classified by the kind of instruction set they support, i.e. as CISC Complex Instruction Set Computers, and RISC Reduced Instruction Set Computers �. Instruction sets can be classified by the number of different operands allowed in each instruction, e.g. zero-, one- two- and three-address codes. In zero-address code, all operations take their operands from the stack and leave their result on the stack - this corresponds to reverse-polish notation. One-address instructions can use an accumulator register and one other operand (memory address) for each operation and leave their result in the accumulator. Two-address code allows two general operands (memory addresses) to be specified in each operation and the result is placed in one of the operands. Three-address code allows values from two addresses to be combined and the result placed in a third location. Thus, for the assignment statement:-



x:= y + z



the code generated (using variable names rather than addresses to aid clarity) will be:-



Zero-Address Code	One-Address Code	Two-Address Code	Three-Address Code



stack y			acc = y			x <= y			x <= y + z

stack z			acc+ z			x<+ z

add				acc=> x

unstack x



�The zero-address code is read as:-



“push y onto the stack, push z onto the stack, add the two items at the at the “top” of the stack leaving the result at the “top” of the stack, store the “top” of the tack at location ‘x’ “



The one-address code is read as:-



“put ‘y’ into the accumulator, add ‘z’ to the contents of the accumulator, store the contents of the accumulator in location ‘x’ “



The two-address code is read as:-



“store the contents of location ‘y’ in location ‘x’, add ‘z’ to the contents of location ‘x’ “



The three-address code is read as:-



“add the contents of locations ‘y’ and ‘z’ and store the result in location ‘x’ “



In general, the instruction set of a processor is designed to be zero-, one-, two- or three-address, i.e. processors with three-address instructions can execute zero-, one- and two-address code but this will not fully exploit the “power” of the processor. Many actual machines, e.g. the 
Motorola
 68000, have only one-address instructions�, however, such processors are reasonably efficient and are comparatively simple to generate and hence will be used for the rest of this lecture course.



7.2 The M68000 Processor



Briefly, the M68000 uses a 16 bit (2 byte) word, whilst operands can be byte-sized, word-sized or long-word sized (32 bit). The M68000 has eight 32 bit data registers designated D0..D7 each of which may me used for 8, 16 or 32 bit arithmetic and logical operations. In addition, the M68000 has eight 32 bit address registers designated A0 to A7 each of which are primarily used for accessing data from memory, i.e. addresses are stored in A0 to A7 and only simple 32 bit arithmetic facilities for ADDing and SUBtracting are provided for these address locations.



 

�



�7.2.1 Instructions�



Instructions may have up to two operands and have the general form:-



Instruction  	Source Operand, Destination Operand

(mnemonic)



Examples:-



MOVE 1000, D0	Moves the contents of memory location 2000 into register D0

MOVE D2, FF		Moves the contents of register D2 into memory location FF (hex)

MOVE #42, D4	Moves the literal value 4210 into register D4



A list of the main instructions used in the remainder of this lecture course is shown below:-



MOVE			move data from source to destination

ADD			destination:= destination + source

SUB			destination:= destination - source

MUL			destination:= destination * source

DIV				destination:= destination / source

AND			destination:= destination LOGICAL AND source

OR				destination:= destination LOGICAL OR source

EORI			destination:= destination EXCLUSIVE OR source

ASL 			destination := destination shifted left arithmetically by source places

ASR 			destination := destination shifted right arithmetically by source places

CMP			compare source with destination

BRA			unconditional branch�

Bxx				conditional branch�, <xx> ::= “EQ” | “NE” | “LE” | “LT” | “GE” | “GT”





7.2.2 Addressing Modes



The M68000 supports indirect specification of operands within instructions via a bracketing notation, e.g.



MOVE (A0), D0	moves contents of address which is stored in A0 into (data) register D0



The contents of the brackets must be an address register.



The diagram below shows how A0 effectively references (‘points’) to the required operand, i.e. provides an indirect addressing mechanism which plays a vital rôle in code generation (see later).





�



The definitions below show the main forms of that operands of instructions may take:-



1.	Dn			A data register ( <n> ::= 0 | 1 | 2 | .. | 7 )



2.	An			An address register ( <n> ::= 0 | 1 | 2 | .. | 7 )



3.	#v			A 
literal
 whose value is the constant “v” (termed immediate data)



4.	v			An operand whose address is given by the constant “v”



5.	(An)		An operand at the address stored in register An



6.	d(An)		An operand at the address stored in register An + d

				(“d” is a displacement constant - the usual mode for accessing variables within the 				stack frame of a procedure - see next lecture�)  			



7.	d(An, Rn.z)	An operand at address stored in An plus the displacement “d” plus the contents of 				the register Rn (where “d” is a displacement constant and Rn acts as an index 				register. “z” indicates the “operative size” of the index register, i.e. W (16 bits) or 				L (32 bits)	



8.	(An)+		Auto-increment, i.e. operates as 5. above but after operand access the 
address


				register is incremented by the size of the operand 



9.	-(An)		Auto-decrement, i.e. operates as 5. above but prior operand access the 
address


				register is decremented by the size of the operand 

 



�Examples of addressing modes:-





�





7.2.3 Operand Size



M68000 instruction may operate upon words (16 bit), bytes (8 bit) and long words (32 bit). The size of an operand is specified by a suffix on the instruction, e.g.



∆	.B byte sized

∆	.W word sized

∆	.L long word sized



The default (unspecified) size is 16 
bits
, i.e. the .W suffix may be omitted.



Examples:-



MOVE.B D0, 4000		move the least significant byte of register D0 (which is 4 bytes long) into

					the least significant byte in address 4000



MOVE.L 20000, D0		move the 4 bytes starting at memory address 20000 into register D0�7.3 Code Sequences



Code sequences for simple Pascal constructs involving scalar variables and the allocation of storage to simple types forms a basis for later considerations of more complex data structures. 



Integers are normally allocated either 2 or 4 bytes. On the M68000 the default is 32 bit integers which provide a range between  -231 and 231 -1 in 2’s complement notation.



Reals� are normally allocated either 4 or 8 bytes.  



Characters are normally allocated 1 byte (8 bits). Operations on characters supported by Pascal are assignment, comparison, pred, succ, ord. Pascal does not permit the ‘mixing’ of characters and integers for very good reasons - cf strong typing.



In principle Booleans require only a single bit, however, access to bit sized variables is ‘slow’ thus a byte is normally allocated.



For subranges of integers some compilers attempt a space optimisation, i.e. less space than a ‘full sized’ integer is allocated. Potentially a byte can represent both a range 0..255 if it is ‘interpreted’ as an unsigned integer, and -128..127 as a signed integer.



Enumeration values are 
represented
 by integers beginning with zero, e.g. the enumerands of 



TYPE colour = (red, blue, green);



are represented as 0, 1, and 2 respectively. Thus, this type only requires 2 bits, however, as with Boolean variables accessing an arbitrary number of bits is generally ‘expensive’ so 1 byte would normally be allocated for a variable of type colour. A byte provides for a maximum of 256 enumerands. Operations on objects of an enumerated type in Pascal are assignment, comparison, succ, pred and ord (see the Type 
Completeness
 Principle in any good book on programming language design for an explanation!).



7.3.1 Example Code Sequences



Integer Arithmetic



i:=x*y - j*z

MOVE.L	x, D0		32 bit operations

MULS.L 	y, D0

MOVE.L	D0, -(SP)	push contents of D0 onto stack

MOVE.L	j, D0

MULS.L	k, D0

NEG.L	D0

ADD.L		(SP)+, D0	pop stack and restore D0

MOVE.L	D0, I



Note how, in this example, the 
M68000’s
 stack is used. The top element of the stack is ‘pointed at’ by the contents of SP (the stack pointer!). Note also how the stack of the M68000 ‘goes downwards’ in memory, i.e. from higher addresses to lower addresses), thus, pushing a value onto the stack requires that the stack pointer is decremented to ‘point’ at the next available location on the stack. Note also the use of the autodecrementing facility:-



MOVE.L	D0, -(SP)



this reads:-



“move the contents of D0 into the location whose address is stored in SP minus 1 long word”, i.e. this is an example of indirect addressing.



The stack is used (amongst other things) for expression evaluation when such expressions cannot be evaluated in a single one-address instruction. Thus, in the above example:-



x * y 		is evaluated and the result is stored on the stack

j * z			is evaluated negated and added to the result on the top of the stack via ADD.L (SP)+, D0

			this adds the contents of the location ‘pointed’ to by the SP to the contents of D0 and

			increments SP (autoincrements it) thus effectively popping the top of the stack



Integer Subrange



VAR x: 1..100;

    y: integer;

.

.

x:=y;





MOVE.L	y, D0		y is 32 bits, i.e. .L denotes a long word

MOVE.W	D0, x		0<=x<=100 thus can be stored in 16 bits, i.e. .W denotes word

SUBQ.L	#1, D0	

CHK.L	#99, D0



For a subrange type (in Pascal) the corresponding code must ensure that the subrange constraint is observed, thus, the CHK instruction checks that the value stored in the destination register (D0 in this example) is within the range 0..value of source operand (in this example 99), i.e.CHK always assumes that the ‘bottom’ of the range is 0 (whereas in Pascal it is 1), thus, 1 must be subtracted from the value being checked!. If the value is ‘out of range’ then a software ‘trap’ will occur.



Note that the instruction SUBQ is a ‘fast’ version of the subtraction operation which can be used with an immediate operand, i.e. the operand #1 is immediately available within the instruction - there are equivalent ADDQ and MOVEQ instructions.



Boolean Arithmetic



VAR a: Boolean;

    b: Boolean;

    c: Boolean;

.

.

a:= NOT b;		MOVE.B	b, D1				

. 				EORI.B	#1, D1	

.				MOVE.B	D1, a	

.

a:= b OR c; 		MOVE.B	b, D1	

.				OR.B		c, D1	

.				MOVE.B	D1, a

.

a:= b AND c; 		MOVE.B	b, D1	

				AND.B	c, D1	

				MOVE.B	D1, a



The negation operation is 
implemented
 by an exclusive OR instruction, i.e. taking the exclusive OR of a Boolean value with 1 
always
 produces the value’s complement (recall that Boolean’s are stored in 1 byte hence operands are all .B)



7.4 Program Control Structures



Simplified M68000 code sequences for Pascal’s and ‘C’ control constructs are shown below:-



WHILE b > a DO s;

while (b > a) s; 		



A while statement can be given an alternative realisation in terms of two ‘goto’s’, two labels and an ‘IF’ statement, e.g.



L1:	IF a >= b THEN goto L2

	ELSE

	BEGIN

		s;

		goto L1

	END;

L2:



Such a realisation ‘translates directly’ into an assembly language representation, e.g.



L1:	MOVE.L	a, Do

	CMP.L	b, D0		Compare ‘a’ and ‘b’ to set test condition

	BGE	L2		Branch if test condition indicates > or =

	...				Code sequence corresponding to statements ‘s’

	BRA	L1		Unconditional branch 

L2:					First instruction corresponding to statement following WHILE loop



In this example, the first three instructions implement the Boolean condition, i.e. the CMP instruction subtracts the source operand ‘b’ from the destination operand (contents of D0 = a) without changing the value of the destination, thus it evaluates ‘a’ - ‘b’. If the result is >= 0, i.e. ‘a’ >= ‘b’ then the BGE instruction causes a branch to L2 (the statement immediately after the WHILE loop), thus, the WHILE loop is terminated because the expression at the ‘top’ of the loop (‘b’ > ‘a’) no longer evaluates to true.



REPEAT s UNTIL a < b;

do s while (a < b);



L1:	...				Code sequence for statement ‘s’

	MOVE.L	a, D0

	CMP.L	b, D0		Evaluates ‘a’ - ‘b’

	BGE	L1		Branches to start of loop if ‘a’ > ‘a’ >= ‘b’



FOR i:=1 TO n DO s;

for (i = 1; i <= n; i++) s;



	MOVE.L	
	
n, D0

	MOVE.L	
	
D0, uppertemp		Save limit in ‘temporary’ variable



	MOVEQ.L	#1, D0
			
I
nitialise loop variable


L1:	MOVE.L		D0, 
i
	
		
S
tore loop variable



	
CMP.L		uppertemp, D0


	
BGT	
	
L2


	
...						Code sequence for 
statements 
‘s
’


	
MOVE.L	
	
i
, 
D0			
U
pdate loop variable


	
ADDQ
.L		#1, D0



	
BRA		L1			Branch back to test



L2:		
					First instruction after FOR loop





In the example above, an 
‘
upper
 
limit
’
 is stored in
 the 
‘
temporary variable
’
 with the corresponding name as, in 
gener
al, the 
‘
upper lim
it
’
 is an 
expression
 and storing the result of the expression obviates the
 need to eva
luate the expression more than once.
 
At the 
‘start
’
 of the loop the index value 
(
stored in register
 D0) 
is stored in memory thus 
‘freeing
’
 D0 for use within the body of the loop. A test is then used to determine if the index val
ue has reached the 
maximum value stored in the 
‘temporary variable
’
. After the code sequence corresponding to the statements in 
‘s
’
 the loop counter is incremented and a 
branch
 is 
executed
 to the 
start of the loop.




IF a < b THEN s1 ELSE S2


if 
(a < b) s1;



else s1;




	
MOVE.L	a, D0



	
CMP.L	b, D0		
E
valuates 
‘a
’ - 
‘b
’
 if positive or 0, i.e 
‘a
’ >= 
‘b
’
 execute


	
BGE	
L1		
ELSE part, i.e. branch to L1


	
...				
Code sequence for statement s1


	
BRA 	
L2		Branch to end of statement



L
1
:	....			
Code sequence for statement s
2


L2:					First 
instruction after IF statement





CASE 
i
 
OF


  
v1: s1;


  v2: s2;

  .

  .


  
vn: sn


END;





switch
 (
i
) 



  {



    
case v1: s1;


             break
;



    
case 
2
: s1;


             break
;



 
   .


    .

    .


 
   
case vn
: sn
;


             break
;



  
}






One (simple) alternative realisation is as a series of IF-THEN-ELSE statements, e.g.




	
CMP	
#
v1, D0


	
BNE	
L1


	
...		
		
Code sequence for 
case 
1



	BRA
	
LEND


L1
:
	
CMP
	#
v2, D0


	BNE	L2



       ...
			
	
Code sequence 
for 
case 
2



	BRA	LEND



L2:	
CMP	#v3, D0


	.

	.


	.


LEND:
	
			
First 
instruction after 
CASE
 statement









�
And finally (eek!!!!!!)





GOTO label






If the label is local then a BRA instruction is generated, however, for non-local labels t
he stack must be 
made to reflect the
 
‘environment
’
 for the procedure containing the label that control is to be transferred
 to
 - see later lecture.




S
ummary and 
Conclusions
	






This lecture has examined the beginning of the 
synthesis stage
 of the compilation process,
 i.e. code generation, 
and has shown how
 code sequences 
(in a given instruction set) 
can be generated for typical hig
h
-level 
language 
co
nstructs.






Chris Harrison, November 1997.





�
Questions






1.	
Write down a sequence of one-address M68000 instructions corresponding to the following Pa
scal 
	
statements:-






VAR x: integer;


    y: integer;


    z: integer;


.
..


x:= 100;


y:=
 
50;


z:=
 2;



w:= 5;


WHILE x > y DO

BEGIN



  
FOR 
i
:= 
1 TO 10 DO

  BEGIN



    
x:= x - 
1;


    IF x > 20 THEN x:= x - 20


 
   ELSE x:= x + 2
0


  END;


  z
:=
x * y * z + 2 * w * z - 3 * y



END
;


.

.


.






‘
Insert
’
 values for the variables 
and thus 
show that the sequence produces the results 
‘
implied
’
 by the 
above statements.





2.
	Using a truth table
, demonstrate
 the exclusive OR of a Boolean variab
le with the number 1 generates 
	
the inverse
 (complement) of the Boolean variable.





Exercises
 






1.	Assuming numbers in Newt are 16 bit quantities (rather than single digits as in earlier
 exercises) 
	
write down M
68000 code sequences 
that implement the Newt  program below:-





var
 x, y;

begin


  x:= 10;


  y:= x;

  z:= 3 + 2;


en
d.
                                                                                                                                                                                                                                                                                                                                                                        
                                                                       



� The following URL provides a comprehensive guide to the M68000 processor. See also appendix 1 and 2 of this lecture note for further details.



http://www.nvg.unit.no/amiga/MC680x0_Sections/index.HTML



� The following URL provides some (ligh-hearted) information about processor performance and also some specifications of RISC processors for students who wish to improve their unedrstanding of such artefacts.



http://www.ece.orst.edu/~herzog/ece375/chap_7.html



The following (slow) URL gives a detailed description of the development of processor architectures.



http://kandor.isi.edu/aliases/PowerPC_Programming_Info/intro_to_risc/irt0_index.html 

� The M68000 does not support “pure’ one-address code, i.e. it contains a number of data registers each of which can act as an accumulator. Thus, the identity of a register used in an operation must be specified together with the memory address of an operand. However, simple code generators for the M68000 typically adopt the policy of choosing one of the data registers as an accumulator, in effect, ignoring most of the others, as this simplifies the code generation process.

� In order to simplify the description given in this lecture, the examples below have themselves been “simplified”, e.g. for simplicity and clarity, a Pascal variable’s name instead of it’s address in the M68000 code sequence is shown. This is not ‘correct’ M68000.



� An unconditional branch instruction is usually of the form:-



BRA lab



where lab is some programmer (or compiler) defined label. The label lab will be ‘attached’ to another instruction, and the execution of the BRA lab instruction will cause control to be transferred to the labelled instruction (cf goto statement in a (high level !!) language. 



� Conditional branch instructions cause a jump to a labelled instruction as above only when some condition is true and usually follow a compare instruction which provides the condition for the jump, e.g.



CMP 	10000, 10001	(compare contents of memory locations 10000 and 10001)

BGT	L1		(branch to label L1 if contents of 10001 > contents of 10000

� The notation $name is used in the lecture notes to represent the displacement of a Pascal variable ‘name’ from the frame pointer A6 (see next lecture).

� In theory, some languages e.g. ‘C’ provide control over the ‘accuracy’ with which integers and reals (floats) are stored via long and double. However, the actual accuracy is dependent upon the implementation of the compliler.
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