UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Lecture 8. Run-Time Stack Organisation

This lecture is concerned with the allocation by a compiler of
memory
 for the
data items
 in a ‘program’. It has been shown how, during the semantic analysis phase, declarations of data items provide a
basis
 for determining the amount of sto
rage required by each data item,
and how such information is stored in a corresponding
property list
 entry. However, a compiler must also determine
where
 in memory data items will be stored and realise some systematic means of
accessing
 such storage.

8.1 Static Allocation

In a simple static allocation strategy the compiler allocates ‘fixed’ (or static) storage locations for variables in a contiguous ‘block’ of memory. This requires that the compiler traverses the property list determining the ‘size’ of each data item from its type information in order that it can allocate the appropriate amount of memory for each variable within the ‘block’. Code (instruction sequences) which manipulate variables can be simply generated in such a static allocation scheme, e.g. a compiler could allocate 4 bytes for two integer variables ‘x’ and ‘y’ at two memory locations, say 10000 and 10004 respectively. The compiled code for the assignment statement:-

y:=x;

would then take the form:-

MOVE.L	10000, D2		Move operand at 10004 into D2

MOVE.L	D2, 10004

A more ‘sophisticated’ allocation scheme, which is also static and which was exploited by compilers for earlier languages, e.g. FORTRAN, is to allocate
addresse
s
 relative to the start of a program’s data using so-called indirect addressing with displacement, e.g. given the following declarations:-

VAR x: integer;

 y: integer;

 z: integer;

 m: integer;

 n: integer;

would result in the following memory allocation:-

�

 The register ‘pointing’ to the start of the program’s data is loaded by the operating system when the program is run in
order
 that the program can be run ‘anywhere’ in memory, e.g. assuming the program contains the assignment statement :-

y:= m;

and that register A6 ‘points’ to the start of the program’s area of memory, then the compiler would generate the following M68000 instructions�:-

MOVE.L	-12(A6), D0		put ‘m’ into D0

MOVE.L	D0, -4(A6)		put D0 into ‘y’

The limitations of a static allocation strategy mitigate against its use for ‘modern’ high-level languages (and even for some rather antiquated high-level languages�) for two reasons, first, because a compiler would have to allocate storage for all the variables in a program irrespective of whether the operations (procedures and/or functions) are actually called, and secondly, because such languages support the notion of recursive operations (procedures and/or functions), i.e. each call to an operation requires its ‘own’ set of variables (potentially an empty set!) yet the number of such sets is unknown at compile time�.

8.2 Dynamic Allocation

For Pascal-like languages, i.e. block-structured with potentially recursively defined procedures and/or functions, the allocation of storage to variables must be determined dynamically, i.e. at ‘run-time’. Of course, any dynamic allocation strategy must be ‘efficient’ in order that the expressive power of the language can be exploited for practical purposes. In practice, for such languages, space for each procedure or function’s local variables is allocated only when the procedure� or function is ‘called’ (invoked) and may be deallocated when the
procedure’s
 execution is completed.

The compiler can compute the
 amount of memory required to hold a procedure or function’s variables� and thus can allocate relative positions for each data item declared in a procedure within an area of store of known size but whose address is not known in much the same way as the second ‘
static
’ allocation strategy described earlier.

At run-time the area for a procedure or function’s variables can be allocated when it is invoked and an address register can be made to ‘point’ to the start of that area such that variables can be accessed at ‘
offsets
’ relative to this address register, so called relative or indirect addressing. Hence, procedures or functions whose definition is recursive can be managed since the required memory can be allocated at each
recursive
 invocation.

The actual area(s) allocated for storage in a dynamic allocation strategy need to be ‘organised’, i.e. the means by which they can be manipulated, such that their behaviour supports directly the
r
un-t
ime
 behaviour associated with (potentially recursively defined) procedures and/or functions. A stack embodies such an organisation and it is no
coincidence
 that the majority of modern processors provide direct support for the efficient handling of stacks. Thus, during execution a stack is used to maintain the variables of a procedure and/or function during each of it’s invocations, i.e. whilst each ‘call’ is executing.

At run-time, each procedure and/or function invocation causes the variables to be allocated space by being ‘pushed’ onto the stack and such an allocation is variously termed a procedure frame or stack frame or activation record. In practice, stack frames also contain other information which is stored in a so-called ‘linkage area’, e.g. information relating to non-local variables, the address of the next statement after the
statement
 which invoked the procedure and/or function, etc. On exit from each invocation, each invocations frame (hence the term activation record) is removed from the stack, i.e. storage allocated to its variables is recovered. The structure of procedure and/or function’s stack frame is built as each declaration is processed at compile-time.

8.2.1 A Dynamic Allocation Scheme

The need to allocate storage to both local and non-local variables and to provide efficient access to such variables was described in the previous section. Local variables (so called automatic variables in ‘C’) results from the block-structured nature of such languages. In Pascal, the scope rule enables variables to be locally, non-locally and globally declared e.g.

PROGRAM scopes;

 VAR i: integer;

 PROCEDURE outer;

 VAR n: integer;

 m: integer;

 PROCEDURE inner;

 VAR x: integer;

 y: integer;

 z: integer;

 BEGIN

 y:=1; z:=2; x:= y+ z; y:= x; x:= n + i

 END;

 BEGIN

 n:= 1; m:= 1; i:= succ(i);

 inner

 END;

BEGIN

 i:= 0;

 outer

END.

The stack frame for procedure inner would take the form:-

�

Note how, assuming an M68000, the address register A6 ‘points’ to the base of the stack frame (actually the second 32 bit word of linkage) and how A7 points to the ‘top’ of the stack and hence the terms for thes
e

registers
, i.e.
 name base (NB) and stack front (SF) respectively. As the stack on an M68000 is organised from high to low addresses the integer assignment:-

x:= y + z;

would result in the instruction sequence below:-

MOVE.L	-12(A6), D2		Move 32 bit operand that is -12 bytes from A6 into D2

ADD.L		-16(A6), D2

MOVE.L	D2, -8(A6)

Note how, in M68000 assembly language, indirect
addressing
 displacements are always in bytes, i.e. the 12 in -12(A6) denotes a byte displacement.

After executing the last statement in of procedure inner in the program scopes would leave the stack in the state shown below:-

�

Note how, in this example, the address registers A6 and A7 always point to the stack frame on the ‘top’ of the stack, i.e. the currently invoked (or executing) procedure. Whenever a procedure is called the addresses in A6 and A7 (which relate to the calling procedure’s stack frame) are ‘saved’ in the linkage area of the called procedure and ‘new’ values are loaded for the most recently entered procedure, thus, the ‘new’ value for A6 is derived from the ‘old’ value for A7, i.e. the frame base for the ‘new’ procedure is immediately below the
 stack ‘top’ of the ‘old’ procedure (see also later) and A7’s ‘new’ value is derived from the storage requirements of the called procedure which were, fortunately !, determined at compile-time.

Then
execution
 of a procedure (invocation) terminates the registers A6 and A7 are reset to ‘point’ to the callers frame on the stack using the addresses stored in the linkage area (see code sequences for procedure calls later). The ‘old’ frame base values stored in the procedure’s linkage area connect the stack frames together in a sequence which is the reverse of the sequence in which the procedures were called and form a dynamic ‘chain’.

�8.3 Non-local Variable Access 	

Two techniques are commonly used to manage non-local variable access, i.e. static chains and displays.

�

The textual level or static level of procedure in scopes2 is shown above. The static level of a procedures in Pascal-like languages defines the variables which are potentially accessible non-locally from a procedure, thus, for procedure inner_inner the variables that can be accessed non-locally are those whose declaration is at the textual level of scopes2, and the procedures outer and inner1. Of course, where procedures have a recursive definition their will be a stack frame for each procedure invocation�.

8.3.1 Static Chain Technique 	

During execution the dynamic ‘chain’
links
 together the stack frames of executing procedures - assuming an M68000 the contents of the NB register A6 of the calling procedure is saved and this forms the dynamic ‘chain’. The use of a dynamic ‘chain’ alone is insufficient to support non-local access of variables, because, even if the static level of procedures in the dynamic ‘chain’ is known there could be several procedures at the same static level in the chain, e.g. inner1 and inner2 which are at the same textual level in the earlier example and, when parametric procedures� are invoked it is impossible to choose the correct frame for a non-local access.

If each procedure being executed has its ‘own’ static chain then the static chain of a procedure links together the stack frames for the procedure that statically (textually) enclosed it and from which variables may be accessed non-locally. The procedure frames on the static chain of a procedure provide the environment or context for its execution, i.e. they contain all of the data items that the procedure is permitted to access. Hence, as the ‘nesting’ of procedures is known at compile-time, the compiler can generate the appropriate static links.

Example

PROCEDURE y(.............);

 VAR a: ...;

 .

 .

 PROCEDURE x(............);

 .

 .

 a:= (* some non-local access *)

A non-local access to a variable ‘a’ declared in a procedure ‘y’ at textual level ‘m’ from procedure ‘p’ at textual level ‘n’ (where ‘n’ > = ‘m’) involves the following:-

1.	When ‘p’ is executing, its stack
frames
 ‘on’ the ‘top’ of the stack, thus, ‘n’ - ’m’ links down the 	static chain are followed to ‘y’s stack frame.

2.	The compiler ‘lays out’ stack frames at compile-time and thus, can calculate the position of ‘y’s 	stack frame relative to that of procedure ‘p’ from the information in the name list , i.e. it can 	calculate ‘n’ - ’m’ or the nesting depth.

3.	The offset of ‘a’ within ‘y’s stack frame will also be known at compile-time, thus code can be 	‘planted’ which traverses the appropriate number of links in the static chain to determine the 	required variable.	

The code to set up the static chain is executed as part of the procedure calling sequence and depends upon the
relationship
 between the called and the calling procedure, i.e. if the called procedure is nested within the calling procedure then the ‘new’ static link points to the static link of the caller, otherwise, the ‘new’ static link must point to the stack frame of the procedure which textually encloses the called procedure, e.g. when inner2 calls inner1 (in the earlier example) inner1’s static link must point to outer which textually encloses it.

The procedure stack when procedure inner1 is executing is shown below:-

�

Note how, in this example, ‘i’ belongs to the program scope2 and ‘l’ belongs to procedure outer, i.e. variables are shown in their declaration scope.

The instruction sequence for the non-local
accesses
 in inner1 is as follows:-

n:=1;

MOVE.L	#1, D2		Load D2 with 110

MOVE.L	-4(A6), A6	Put address of outer’s frame into A3

MOVE.L	D2, -8(A3)	Store accumulator in ‘i’

i:=2;

MOVE.L	#2, D2		Load D2 with 210

MOVE.L	-4(A6), A3	Put address of outer’s frame in A3

MOVE.L	-4(A3), A3	Put address of scope2’s frame base in A3

MOVE.L 	D2, -8(A3)	Store accumulator in ‘I’

In the above example, A3 is used as a ‘temporary’ frame-base register - recall that the static link is 4 bytes below the name base.

Where procedures have a ‘heavily nested’ static structure there is a significant overhead when accessing variables non-locally across several textual levels, e.g. to access a global variable (static level 0) from a procedure at static level, say, 10, involves 11 instructions, i.e. 10 instructions to ‘follow’ the static links and one instruction to access the variable, thus, some form of ‘optimisation’ for this chaining can be justified.

8.3.1 Display Technique 	

A ‘display’ technique is essentially an ‘optimisation’ of the static chain technique, i.e. its basis is the maintenance of a vector in memory (the so-called ‘display’) whose entries ‘point’ to all of the stack frames which need to be accessible to the procedure currently executing. Thus, upon entry and exit from a procedure the display is updated and previous display elements are ‘stored’ in the linkage area of the stack frame in order that the correct ‘context’ can be established when the procedure’s execution is completed.

Example

In the example below, a stack and a display for the execution of procedure inner1 is shown. Before entry to inner1, inner2 was the procedure at textual level 2, thus, DISPLAY[2], i.e. the display entry ‘pointing’ at the frame at static level 2) ‘pointed’ at procedure inner2’s stack frame. Procedure inner2 calls procedure inner1 (at the same static level), thus, on entry to inner1 the current value of DISPLAY[2] must be stored in the linkage area of inner1 and DISPLAY[2] updated to ‘point’ at inner1. On exit from inner1 the ‘old’ value of DISPLAY[2] is retrieved from inner1’s linkage area and is placed back in DISPLAY[2], i.e. the correct context for inner2’s execution is reestablished. Access to non-local variables is thus indirect
through
 the display, and, typically, a register is allocated to ‘point’ to the start of the display.

�

The display
‘points
’
 to those procedures
’
 stack frames from which inner1 can access variables non-locally, i.e. its environment. No
te how the display contains the links of the static chain
 (if it was maintained
) for the currently executing procedure. Thus, the address of a procedure frame for a non-
local access can be obtained in one instruction from the display, whereas in the static ch
ain technique an app
ropriate number of
‘links
’
 must be traversed to find the same address.

In the example instruction sequences below, it is assumed that a procedure display is
‘pointed
’
 to by register A2, thus, the code for a non-local access in inner1
 is:-

n:=1;

MOVEQ.L	#1, D2
	
	
Load D2 with
1
10
		

MOVE.L	-4(A2), A3	Load frame base for textual level 1

MOVE.L	D2, -8(A3)	Perform the assignment

i
:=2;

MOVE.L 	#2, D2		
Load D2 with
2
10

MOVE.L	(A2), A3	Load frame base for textual level 0

MOVE.L 	D2, -8(A3)	Store accumulator in
‘
i
’

In the above example, the first three entries in the display
‘point
’
 to the static frames that collectively form the environm
e
nt for the execution of inner1.
As displays must be capable of supporting
some reasonable level of
‘nesting
’
 (of procedures) 16 or 32 ele
ments are usual maximum sizes. The main advantage of the display technique over the static
 chain technique is more efficient non-local access (in terms of the number of
instructions
 which must be executed) but, as with all space-time trade-offs
,
 there are
disadvantage
s
, namely:-

1
.	The
‘
cost
’
 of maintaining the display during
‘normal
’
 procedure calls is a little larger than the
‘cost
’

	
of maintaining the static chain.

2.
	With the static link technique the
‘environment
’
 for the invocation of a procedure with a procedure
	
pass
ed as a parameter can be passed using only a link to its start, whereas, with the display
	
technique the procedure
’
s environment must be passed together with its address, i.e. when a
	
procedure is passed as
 a para
meter the environment for its invocation is defined as the environment
	
at the time of pass
ing the procedure as a parameter and when such a parametric procedure is called
	
its enviro
nment is determined from
the environment that was passed as part of the parameter.

Of course, alternative
s

to the two techniques
described
 above are possible, e.g. w
here many registers are available the complete display could be maintained entirely in reg
isters. Empirical analysis has demonstrated
that non-local access is most common
to variables at textual leve
ls 0 and 1, thus some techniques seek to
reduce only the
‘
costs
’
 of such accesses
, e.g. by having a display with the
‘bottom
’
 entr
ies in registers and the others in memory, or alternatively, by some
‘mix
’
 of the two techniques, e.g. a display is maintained for textual levels 0 and 1 and a stat
ic chain is maintained for
‘
hi
g
her numbered
’
 (more
 deeply nested) textual levels.

8.4 Procedure
Ca
ll
and Return

The notion of the
‘passing
’
 of control during procedure call and return is fundamental to the techniques discussed ea
rlier.
 The actions associated with call a
nd return are described below
�
:-

Procedure Call

1.	Push the parameters (one at a time) onto the (top of the) stack

2.
	Compute the static link - code for this computation is
‘planted
’
 at compile-time (the compiler can
	
determine from the textual level information in the nam
e list the relative textual levels of procedures
	
that call and are called)

3.	Store the return address, i.e. the address of the statement following the call statemen
t
, the
‘old
’

	
v
alue of the frame base pointer (
the
‘
new
’
 dynamic link) and the
‘new
’
 static link in the linkage area
	
which is currently on the
‘top
’
 of the stack, i.e
.
preceding the parameters).

4.	Update the frame base and stack
‘top
’
 pointers - the stack
‘
front
’ or
‘top
’
 pointers
 can be updated
	
because
 the amount of storage required by the called procedures variables i
s known.

5.	Execution of the procedure may commence and, during execution,
parameters are accessed at
	
positive offsets from the frame base, i.e. as they were
‘
pushed
’
 onto the stack before the linkage
	
informatio
n

Procedure Return

1.
	Reset the stack
‘front
’ pointer

2.	Reset the frame base

3.	Exit to the procedure
’s return address

4.	R
emove the parameters

Summary and Conclusions.

This lecture has examined
 how a compiler
allocates
 memory for a program
’
s data,
where
 such data is stored in memory at run-time and also how such data is
accessed
, i.e. both locally and non-locally.

The choice of languag
e has a profound affect upon the kind of support that a compiler must provide, thus, for e
xample,
a language
like Pascal
which enables
 recursively defined procedure
s
 and function
s

requires a compiler

a
nd run-time organisati
on capable of managing the execution of such structures.

One might try to
‘argue
’
 that a language which provides such facilities is inherently problematic
(in terms of the
need
 to develop underlying
compiler and run-time
support)
and that descrip
tions of
‘
equivalent
’
,
i.e. non-recursive or iterative, procedure and function abstractions
are

‘more
’
 acceptible
 and hence that a
‘
simpler
’
 language would suffice
.
Indeed,
t
he
 ability to define parametric procedures
(in Pascal)
could equally well be regarded as

inherently
problematic, not lea
s
t, because it
’
s manifestation as a
feature of Pascal

leads to an
‘ad-hoc
’

loss of strong typing
(
something we
should
avoid
 at all costs)
, and
similarly
because
it requires a compiler and

run-time organisati
on capable of managing the execution of such structures
.
 It also makes for diffult
‘reading
’
 and hence reasoning about such abtsractions!

However,

iteration
(in all it
’
s guises)
is simply a
(
language specific
)
 form of tail recursion

(in effect a
‘
short-hand
’
 for an equivalent recursive description)
and parametric polymorphism
(the more general notion of which parametric procedures are one manifestation)
 is a vital
adjunct
 to the notion of inheritance (in all
its
 guises, e.g. subtyping in the
context of Pascal) that
we exclude it at our (
expressive
) peril!

Chris
 Harrison, November 1997
.

� The implication, here, is that the first variable declared is given the highest memory address and the last the lowest address - see later why!

� Algol, for example, supported recusively defined operations (procedures and/or functions).

� FORTRAN, COBOL and other such languages do not support recursively defined operations but do provide support for ‘sub-routines’ (FORTRAN) and ‘sub-programs’ (COBOL).

� Similarly for procedures declared in (separately compilable) modules and also for program’s which are (
i
n this context) degenerate forms of procedures.

�
We must be careful not to confus
e the notion of dynamic data types with that of dynamic allocation straga
g
ies, i.e. dynamic data structures are managed using a different notion - a ‘heap
’
.

� In ‘C’ it is not permitted to ‘nest’ function declarations (eek!!!) and variables are either automatic (i.e. local) or static (ignosing extern variables!). A variable declared ‘outside’ a function is non-local and its scope is all of the functions which follow the declaration. A static variable is normally declared in a function and is only accessible within that function, however, it retains its value from one invocation of the function to the next. Thus, ‘C’ compilers normally store static and global variables in a data area which is not ‘on’ the stack.

� For those students with the necessary stamina, a
parametric procedure
 (or
function
) takes arguments which are themselves procedure
s
 (or function
s
)
.
 The inclusion of this language feature was (
as
I

seem to recall) a m
eans of
‘
luring
’
 unsuspecting

numerical
analysts
 (amonsgt other
s
) to use the language, thus, the only useful examples of this f
eature being exploited
in a systemtic manner
are
typically functions
, e.g.
t
he
integration
function
 below
:-
 evaluates
�

using
 Simpson
’
s Rule.

FUNCTION simpson(
FUNCTION f(x: real): real; a: real; b: real): real;

BEGIN

 simpsons:=(f(
a) + 4*f((a + b) / 2) + f(b)) * (b-a) / 3

END;

The actual integration technique used in the above function is a poor one and in practice
some more sophistic
a
ted technique would be used by a
‘real
’
 numerical analyst
 (eek!!!)
, e.g. Runge-Kutta springs (rather prozaically) to mind
†
.

†
Ma
lco
lm
W
hittle would truly be amazed that
I

even remember such things
! Perhaps all students on
‘
computing
’

courses
could benfit

from a

little
 numerical analysis ?

�
The actions described below are
simplified in the sense that they are the minimun that need be done.

CT206 Languages and their Implementation Ver. 0.1 Chris Harrison 1997	Page � PAGE �
2
�

