UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Lecture 11. Code Optimisation

The organisation of support for code optimisation in a compiler is a large topic which is suitable for a series of lecture courses. Typically, optimising compilers provide ‘options’ which enable ‘code’ to be improved in the sense that the ‘code’ produced is more space and/or time efficient. The complexity associated with such ‘improvements’ is due to the nature of the algorithms used, i.e. such improvement algorithms are inherently complex. It is important to note that any such improvements will never achieve the same ‘savings’ as choosing an optimal algorithm for the computation to be performed, i.e. savings associated with ‘code’ optimisations for an algorithm with greater time and/or space complexity will always be surpassed by an algorithm with a lower space and/or time complexity. Thus, it is the responsibility of the software developer to ensure that an underlying algorithm with optimal space and /or time complexity is used.

11.1 A Classification of Optimisation Structures
The syntactic structures found in software components permit optimisations to be applied at various ‘levels’, e.g.

∆
Expression optimisations

∆
Block optimisations

A basic ‘block’ is a sequence of instructions with a single entry and exit point, i.e. ‘control’ is only

ever passed to the first instruction in the sequence and is only ever passed back from the last
instruction.

∆
Iteration (loop) optimisations

Such optimisations may be constrained to the inner-most loop that consists of a single block, or they

may include optimisations on nested loops and more complex block structures.

∆
Intra-procedural optimisations

Optimisations of this kind are made upon a complete procedure by constructing (at compile time)

a ‘flow graph’ of the basis blocks in the procedure.

∆
Inter-procedural optimisations

Optimisations of this kind are applied to collections of procedures or whole programs.

Example:-

The Newt program shown below provides a basis for a corresponding TAC representation using the conventions from the previous lecture:-

Newt Program

TAC ‘equivalent’ instruction sequence
var x, y;

begin

 x:= 0;

x:= 0

 y:= 10;

y:= 10

 while x = 0 DO

label1:

if x <> 0 goto label2

 begin

 x:= 15;

x:= 15

 y:= 2;

y:= 2

 end;

label2:

.

end.

.

.

A ‘flow graph’ for the TAC instruction sequence is shown below:-

 EMBED Word.Picture.8

11.2. Peephole
 Optimisation
Peephole optimisation techniques are applied to small sequences of instructions rather than to the structures identified in the previous section. The kinds of optimisations that are possible using such techniques include:-

∆
Exploiting features of a machine’s architecture

∆
Optimisations on the control flow

∆
Algebraic simplifications

∆
Strength reduction

∆
Elimination of redundant instructions

11.2.1 Exploiting A Machine’s Architecture (instruction set)

It is in the nature of CISC processors that they include sets of instructions with similar actions, for example, the M68000 provides two address MOVE instructions and an address CLR instruction that may be used to set a variable in memory to 0. A simple peephole optimisation which exploits these instructions is shown below:-

Statements

Initial instruction sequence

Optimised instruction sequence

i:= j;

MOVE.L
$j(A6), D2

MOVE.L
$j(A6), $i(A6)

k:=0;

MOVE.L
D2, $i(A6)

CLR.L

$k(A6)

MOVE.L
#0, D2

MOVE.L
D2, $k(A6)

11.2.2 Control Flow Optimisations

A frequent property of instruction sequences generated by a compiler (during the generation of control constructs) is control transfers to (other) control transfers, e.g.

BRA
L1

...

BRA
L1

...

L1:
BRA
L2

Such control-to-control transfers can be improved to:-

BRA
L2

...

BRA
L2

...

L1:
BRA
L2

this may be removed if redundant

11.2.2 Algebraic Simplification(s)

Instruction sequences for the following kinds of statement can be removed
:-

x:= x + 0;

i:= i * 1;

etc

11.2.4 Strength Reduction

Exponentiation by powers of 2, 3 and 4 can be replaced by repeated multiplication, and the multiplication and division of integers by powers of 2 can be replaced by shift instructions (which typically execute ‘faster’).

11.2.5 Eliminating Redundant Instructions

Statements

Instruction sequence

Optimised Sequence

i:= j +1;

MOVE.L
$j(A6), D2

MOVE.L
$j(A6), D2

k:=i;

ADD.L

$i(A6), D2

ADD.L

$i(A6), D2

MOVE.L
D2, $i(A6)

MOVE.L
D2, $i(A6)

MOVE.L
$i(A6), D2 (redundant load of D2)
MOVE.L
D2, $k(A6)

MOVE.L
D2, $k(A6)

11.2.6 Expression Optimisations

The repeated evaluation of a subexpression (in some expression) can be eliminated by a single evaluation and the storing of the result (for later re-use), e.g.

e:=
(a + b)
*
(c + d)
+
(a + b);





common subexpressions

It is also common for subexpressions to appear in array accesses, e.g.

x[i, j]:= y[i, j] * z[i, j];

where ‘x’, ‘y’ and ‘z’ are of the same (array) type. The instruction sequence to evaluate [i, j] in the above example is common to all three array accesses and thus need only be evaluated once and (possibly stored prior to) reuse.

The removal of common subexpressions can also be applied to basic ‘blocks’ and also to complete procedures provided, of course, that the lifetime of the variable values involved has been determined.

A theoretical basis for removing common subexpressions is provided by graph theory in the form of systematic modifications to a the syntax tree representation (produced during parsing) to form a directed acyclic graph (DAG).

 EMBED Word.Picture.8

Such re-orderings of expressions have the potential of reducing the number of registers and temporary variables used for expression evaluation. Thus, for example, the parse tree for

a + b * c

would be re-ordered as:-

 EMBED Word.Picture.8

The left-hand tree requires ‘a’ to be stored temporarily whilst b * c is evaluated, whereas the right-hand tree does not.

11.2.7 Iteration (Loop) Optimisation

The optimisation of iterations (loops) has the potential of improving ‘speed’. One important ‘loop’ optimisation is termed the motion of invariant code, i.e. the compiler ‘moves’ subexpressions (possibly also complete assignments) contained in the body of the ‘loop’ whose value does not change (is invariant) each time ‘round the loop’ to the ‘outside’ of the ‘loop’, e.g.

FOR i:= 1 TO 1000 DO

 sum:= sum + 2.0 * k * j / a[i];

The invariant subexpression

2.0 * k * j
would be ‘moved’ by the compiler ‘outside the loop’ yet give an equivalent computation, e.g.

temp:= 2.0 * k * j;
FOR i:= 1 TO 1000 DO

 sum:= sum + temp / a[i];

Other examples of iteration optimisations include the maintenance of the ‘loop control variable’ in a register, and, (as mentioned earlier) register allocation strategies, and the removal of common subexpressions.

11.2.7.1 Induction Variables

Where variables in an iteration are related to one another, e.g. as simple functions of one another, only one such variable need be maintained, e.g.

FOR i:= 0 TO 20 DO

BEGIN

 j:= 2 * i;

 sum:= sum + a[j]

END;
The variables ‘i’ and ‘j’ are clearly related to one another and are termed induction variables. Similarly, in the statement:-

FOR i:= 0 TO 20 DO sum:= sum + a[i];

the control variable ‘i’ and the actual array index are (more subtly related) induction variables. Assuming an integer occupies 4 bytes (in an M68000) a scaled version of the loop control variable ‘i’ is sufficient to enable access to appropriate element of ‘a’ at each iteration. Maintaining the scaled index in a register using addition is generally more efficient than computing the scaled index using multiplication, thus, the unoptimised instruction sequence for the above statement can take the form:-

MOVE.L
#0, D6

maintain ‘i’ in D6

MOVE.L
#0, D5

maintain induction variable 4 * ‘i’ in D5 (scaled index)

LOOP:

MOVE.L
$sum(A6), D2

ADD.L

$a(A6, D5.L), D2
access appropriate element of ‘a’ using scaled index

MOVE.L
D2, $sum(A6)

ADD.L

#4, D5

increment scaled index

ADD.L

#1, D6

increment index ‘i’

CMP.L
D6, #20

check for end of loop

BLE

LOOP

Since the control variable ‘i’ is used only as a counter the induction variable (4 * i) maintained in D5 could be used instead, i.e. the control variable ‘i’ can be eliminated, e.g.

MOVE.L
#0, D5

maintain induction variable 4 * ‘i’ in D5 (scaled index)

LOOP:

MOVE.L
$sum(A6), D2

ADD.L

$a(A6, D5.L), D2
access appropriate element of ‘a’ using scaled index

MOVE.L
D2, $sum(A6)

ADD.L

#4, D5

increment scaled index

CMP.L
D6, #80

check for end of loop

BLE

LOOP

Collectively, improvements due to ‘loop optimisations’ can be effective for iteration-bound computations, e.g.

prod:= 0;

FOR i:= 0 TO 20 D0 prod:= a[i] * b[i] + prod;

Unoptimised M68000

Optimised M68000

Instruction Sequence

Instruction Sequence
MOVE.L
#0, D2

Init. prod to 0

MOVE.L
#0, D2

MOVE.L
D2, $prod(A6)

MOVE.L
D2, $prod(A6)

MOVE.L
#0, D2

MOVE.L
#0, D5

init. induct’n

MOVE.L
D2, $i(A6)

Init. counter to 0

variable

LOOP:

LOOP:

MOVE.L
$i(A6), D1

MOVE.L
$a(A6, D5.L), D2

MUL.L
#4, D1

Scaled index for
MUL.L
$b(A6, D5.L), D2

access to ‘a’

ADD.L

$prod(A6), D2

MOVE.L
$a(A6, D1.L), D2

MOVE.L
D2, $prod(A6)

MOVE.L
$i(A6), D1

ADD.L

#4, D5

increment

MUL.L
#4, D1

Scaled index for

induction var

access to ‘b’

CMP.L
D5, #80
check for

MOVE.L
$b(A6, D1.L), D2
a[i] * b[i]

loop end

ADD.L
$
prod(A6), D2

update prod

BLE

LOOP

MOVE.L
D2, $prod(A6)

MOVE.L
$i(A6), D2

ADD.L

#1, D2

increment ‘I’

MOVE.L
D2, $i(A6)

CMP.L
D2, #20

check for

loop end

BLE

LOOP

In the unoptimised version, the simplistic organisation of the code generator has resulted in an instructions sequence in which the same scaled index has been calculated twice (a[i] and b[i]). The body of the loop contains 11 instructions that total 34 16bit words and the instructions access 8 32bit words of data from memory. A single induction variable could be used to maintain the subscript value for ‘a’ and ‘b’ and to control the loop thus eliminating ‘i’ from the loop. The induction variable can be maintained in register D5. The optimised version has exactly these optimisations; addition, ‘prod’ can be maintained in a given register (say D4) for the lifetime of the iteration, and ‘peephole’ optimisations (CLR.L rather than MOVE.L #0) can be made. The body of this iteration contains 4 instructions that total 8 16bit words and the instructions access 2 32bit words from memory.

Note
:

The potential gain in execution speed obtained from such optimisation techniques depends upon the total number of clock cycles taken to execute the unoptimised and the optimised versions and this, in turn, depends on the kinds of instruction within the iteration. Typically, though not necessarily, this potential gain can be actually realised.

11.3 Intraprocedural Optimisations

Such optimisations are based on the notion of a data flow graph (constructed by the compiler) of all of the basic blocks in a procedure which is then used as a means of identifying the definition points and lifetimes of variable values. Such information can be used to eliminate common subexpressions defined globally to a given procedure and also as a means of organising a systematic allocation strategy for registers that is global to the procedure.

11.3 Interprocedural Optimisations

Finally, optimisations can be made by determining the call dependency of procedures, e.g.

∆
Parameters can be ‘passed’ using registers

∆
‘Short’ procedures can be ‘unrolled’ and their ‘longhand’ representation ‘planted’ inline

rather than by calling them

∆
Some overheads due to procedure calls can be reduced

Summary and Conclusions
The single best optimisation is not an optimisation in any conventional sense (conventional denoting that an existing representation of some computation is modified to exploit some property of an instruction set, or an algebraic substitution due to a property of some arithmetic, or the architecture of the machine which executes those instructions, etc), i.e. choose an optimal algorithm!

The very nature of the kinds of optimisation identified in this lecture leads to a corresponding complexity in their use, i.e. they can be organised in a variety of different ways, they can be applied at different phases of the compilation process, and they may not have mutually exclusive effects. Never-the-less, compilers are available which apply many optimisation phases based upon tree-like representations of instruction sequences and much research effort has been expended upon the development of techniques which provide a systematic (well-founded) basis for producing highly-optimised ‘code’, e.g. using table-driven machine-independent algorithms.

Chris Harrison, November 1997.

Exercises.
1.
Define and explain the terms ‘peephole’ optimisation and global optimisation giving examples of
each.

2.
Identify the basis blocks in the procedure new-expression (previous lecture) and draw flow graphs
for this procedure.

3.
What is an induction variable and how can such a notion be exploited as the basis for
optimisations?

4.
At what phases of the compilation process can optimisations be performed ?

5.
Compare and contrast the various kinds of ‘loop’ optimisation that can be applied by a compiler
sing simple example.

6
Given the string below, written in a Pascal-like language, write down the sequence of M68000
instructions that might be generated by a compiler which generates one address code and which
performs no optimisation.

VAR i: integer;

 j: integer;

 d: integer;

 e: integer;

 f: integer;

 a: ARRAY[1..100] OF integer;

 b: ARRAY[1..100] OF integer;

 c: ARRAY[1..100] OF integer;

 ...

BEGIN

 d:=0;

 FOR i:= 1 TO 100 DO c[i]:=a[i] + b[i];

 FOR j:= 1 TO 100 DO d:=d + c[j] + (e - f);

 ...

END.

Using your answer from 5) above, identify which of the optimisations discussed can be applied and state other optimisations which could also be made. Show the effects of these optimisations in terms of the Pascal representation and also suitably annotated optimised sequences of M68000 instructions.

� The term ‘peephole’ is intended to convey the notion of a concious choice of a small sequence of instructions on the part of the ‘optimiser’ which can be dealt with ‘in isolation’, i.e. in an ad-hoc manner. Keyhole surgery seems to provide a similar style of approach albeit in a rather different context!

� Zero and unity (one) have the same property, i.e. they are both identity elements because, if, in any system possessing a binary operation symbolised by there is an element e which has the property e x = x for all x in the system, then e is called an identity element. e comes from the German word einheit which literally means unity.

� Two further (related) optimisations are based upon the notion of simple textual substitution and a potential saving due to the elimination of one set of iteration control overheads, i.e.

Unrolling	

FOR i:= 1 TO 4 DO sum:= sum + a[i]			sum:=sum + a[1] + a[2] + a[3] + a[4]

Jamming	

FOR i:= 1 TO 1000 DO a[i]:= i;			FOR i:= 1 TO 1000 DO

FOR i:= 1 TO 1000 DO b[i]:= i;			BEGIN

								 a[i]:= i;

								 b[i]:= i

								END;

CT206 Languages and their Implementation Ver. 0.1 Chris Harrison 1997
Page 1

_1049873819.unknown

_1049873820.unknown

_1049873818.unknown

