UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTATION

CT206 Languages and their Implementation

Pocket Guide No. 1 (Formal Language Theory)

1. Alphabet is a finite set of symbols.

Alphabet of English is set of all valid English words.

Alphabet of programming language is set of all valid tokens or lexemes.

2. Alphabet of lexemes is character set used to form valid lexemes.

3. String (sentence, word or program) is a finite sequence of symbols drawn from an alphabet.

|s| denotes length of string s

e denotes enpty string

| e | = 0

4. Grammar comprises set of production (derivation, rewrite) rules that specify how strings are constructed from vocabulary.

5. Language denotes a set of strings constructed from production rules whose symbols are drawn from a given alphabet.

6. A grammar is defined by a quadruple (Vt, Vn, P, S) where Vt is the alphabet (or vocabulary) of the basic symbols of the grammar and is the set of terminal symbols (or just terminals T), Vn is the set of symbols defined by the production rules (the non-terminal symbols), P is a set of production rules and S is a unique (non-terminal) starting symbol.

Usual convention is that Greek symbols are used to denote strings of terminals and non-terminals.

7. Production rules for most programming languages have the form:-

A -> xyZbD

i.e. left-hand side is a single non-terminal, right-hand side is a string of terminals and non-terminals.

8. Parse (derivation) tree is a simple proof that a string is a member of the set of strings (language). Root is labelled with a single start symbol, each leaf is labelled with a terminal symbol or e, each interior node is labelled by a non-terminal, if A is a non-terminal symbol labelling some interior node and the labels of the children of that node (read from left to right) are X1, X2, ... Xn the A -> X1X2...Xn is a production consisting of either terminal or non-terminal symbols.

9. Regular (right-linear, type 3) grammars are used to describe symbols (tokens, lexemes) of a programming language. Symbols may be reserved (key) words, identifiers, special symbols, etc.

10. Context-free (type 2) grammars are used to describe syntax of most (modern) programming languages.

11. Grammar classification can be associated with abstract machines (automata) capable of recognising (generating) sentences of language in each classification:-

Type 3 (regular, right-linear) is associated with finite state machine(FSM, finite automaton) with a finite number of states and which switches from one state to another as each symbol of a sentence is read (generated). Switching between states depends solely upon current state and the next symbol read.

Type 2 (context-free) is associated with a push-down automaton, i.e. state machine with a stack which ‘records’ previous states. Stack enables parser to determine relationship between different productions being applied due to existance of non-terminals in any position in right-hand side of production(s).

Type 1 (context sensitive) is associated with linear-bounded automaton (Turing Machine) with a finite length tape.

Type 0 is associated with a Turing Machine with an infinite length tape.

12. If two different grammars (G, G’) define (generate) the same language then the grammars are equivalent. Different but equivalent grammars generate different parse trees for the same string.

13. A grammar is ambiguous if there is more than one parse tree for a given string.

14. Productions in a grammar may be recursive. If the non-terminal symbol responsible for the recursion starts the right-hand side of a production then production is left-recursive, if it finishes right-hand side of production then production is right-recursive.

X -> a | Xb

Y -> g | dY

Left-recursion production can be removed by replacement with two productions:-

X -> aB

B -> bB|e

15. Left-factoring transforms alternative production for a given non-terminal which starts with the same strings:-

<car> -> b r | b m

can be left-factored into:-

<car> -> b <rest>

<rest> -> r | m

16. Regular expressions define set of strings generated by regular grammar and are constructed from simpler regular expressions using concatenation, alternation and repetition. Regular expression defines (has a corresponding) regular language. Regular definition is a named set of regular expressions. A regular definition has a single equivalent regular expression.

CT206 Languages and their Implementation Pocket Guide No 1. Ver. 0.1 Chris Harrison 1997	Page � PAGE �2�

