Object-Oriented Software

A "Pocket" Guide To Object Orientation

Part 1. Objects and Messages

The notions of a “message” and “message passing” seem. initially, to be almost self explanatory. However, it is important to be able to relate such notions to other ideas which underpin the object oriented paradigm, in particular, the notion of a method.

1.1 A Single Initial Notion

We assume a single initial notion, i.e. that of an object. An object receives and sends messages. To define an object we describe its class. Each individual object of a class is termed an instance. If we create an object "O" of the class "C" then the class "C" defines what it is to be an object "O" in terms of all of the messages M0, M1, ...Mn an "O" object can "act" upon. To act upon a message an object invokes a method. We can, of course, create several objects O1, O2, ..., On from the class "C".

1.2 A Pure Language

In a "pure" object oriented language, e.g. the expression-oriented language SmallTalk, we might write:-

a <- 1;

b <- 2;

c <- a + b;

In SmallTalk, the expression c <- a + b; is an assignment expression which is evaluated thus:-

1	The expression a + b requests the receiver object (the result of evaluating the subexpression 	a) to perform the operation + with the object yielded byb as an argument.

2.	The expression a + b when evaluated yields a result which is always a reference to an 	object.

3.	The assignment of the result of the evaluation of the expression a + b has the side effect of 	making the variable c refer to the same object as that which results from the evaluation of the 	expression a + b

�

2.0 A Model Language

In a "model" object oriented language�, an integer expression of the form a + b can be an argument to a method application, or part of an assignment statement, or part of the body of a function.

In the example below, the expression a + b is an argument in an application of the show_integer method. This method takes three arguments, an integer (expression), and an "x" and "y" coordinate at which the integer is to be "displayed", e.g.

show_integer(a + b, 90, 40)

A method must be applied to some object that supports that method. In a "model" language, the predefined type window supports a method show_integer together with another predefined operation called display. Thus, a subtype of the type window called int_in_window can redefine the meaning of the display operation inherited from the supertype, e.g.

TYPE int_in_window;

 SUPERTYPES window;

 PROCEDURE display;

 BEGIN

 self.show_integer(a + b, 90, 40)

 END;

END.

To "drive" the application of the display method, an initial method is defined for objects of type int_in_window. The initial method (which is guaranteed to be executed first when objects of type int_in_window are created) assigns suitable "initial" values to the instance variables a and b and then applies the display method to self, i.e. an object of type int_in_window.

TYPE int_in_window;

 SUPERTYPES window;

 VAR a, b: integer;

 PROCEDURE initial;

 BEGIN

 a:=1;

 b:=2;

 self.display

 END;

 PROCEDURE display;

 BEGIN

 self.show_integer(a + b, 90, 40)

 END;

END.

Chris Harrison, January 1997.

� The term “model” is used to denote a language which is intended to exemplify good design. Typically, such a language is suitable for both teaching and also the systematic construction of engineering of large scale software systems by skilled software developers. We will consider the syntax and semantics of such a language in more detail later lectures. (It is based upon the Eiffel language for those who wish to develop their understanding further).

Briefly, in such a language, a class is defined by a type definition, e.g.

TYPE example_type;

END.

A type may be a subtype of some other type, e.g.

TYPE example_type;

 SUPERTYPES some_supertype;

END.

A type may have instance variable, e.g. i: integer, and methods (realised as functions and procedures), e.g. double:-

TYPE example_type;

 SUPERTYPES some_supertype;

 VAR i: integer;

 PROCEDURE double; i:= i * 2;

END.

			Page � of 2

