

UNIVERSITY OF MANCHESTER INSTITUTE OF SCIENCE AND TECHNOLOGY



DEPARTMENT OF COMPUTATION



Object Oriented Specification, Design and Implementation



Lecture 1: Types and Type Constructors



Introduction

“[Programming]...  is easier to learn than piano 

playing but more difficult than tic-tac-toe”

Schneiderman



The lecture has been written such that it assumes only a knowledge of a block-structured high-level programming language
�
. The style of presentation seeks to identify fundamental and general concepts and principles, and to explain these by simple examples. Where necessary, footnotes, appendices and references are included in order that terms used, and concepts and principles introduced, are clarified and may subsequently be further studied. 



This lecture is concerned, first, with a notion fundamental to the development of descriptions of computations, i.e. the notion of type. Secondly, in the context of program language design, we will examine the notion of abstraction, in particular, how a module construct provides a basis for developing realisations of types. Finally, the notion of abstract data types will be examined and used in later lectures as a basis for furthering our understanding of the notions of class and class instance  (or object.).



Background



The notion of object orientation is now widely used as a basis for developing a variety of different kinds of description, including specifications, designs and also implementations of software systems written in programming languages. The notion of object orientation can be placed in a variety of different contexts�, however, one particular context enables us to see how object orientation seeks to address limitations of existing programming languages, i.e. the context of programming language design.




�
Programming languages reflect or embody a paradigm, i.e. a "model" against which they can be compared and contrasted. Fundamental and general paradigms include the imperative paradigm, the functional paradigm, the declarative paradigm and also the concurrent paradigm�. 



A particular programming language will embody notions drawn from at least one paradigm, for example, it may be essentially a "functional" programming language yet also embody the notion of assignment drawn from the imperative paradigm. 



Object-oriented programming languages may be extensions or revisions of existing languages, or they may have been expressly designed "from scratch" to embody the object-oriented paradigm, i.e. the notions of class, class instance (object), inclusion polymorphism (inheritance), parametric polymorphism (type parameterisation), ad-hoc or intersection polymorphism,  etc.



In addition to object oriented programming languages, a variety of different means of developing software designs,  have become widely used. These design techniques seek to embody notions drawn from the object oriented paradigm. There are also object oriented specification notation techniques which enable software components to be given a description about which certain properties can be proved using mathematics and logic. Finally, object orientation has been employed as a means of organising the description, storage and manipulation of persistent data, e.g. object oriented database systems.



We will examine, next, the notion of type and how types are provided by programming languages and may be constructed using programming languages.



Types and Programming Languages



When we say that v is a value of type T we imply that v Œ T, i.e. that a type T is a set of values. We also imply constraints upon the operations which may be applied to values of the type, i.e. we insist that all the values of the type exhibit uniform behaviour under operations associated with the type. Thus, {0..9} is a type because its values exhibit uniform behaviour under the operations +, -, DIV and MOD, but {true, maybe, 42, fred} is not a type in this context.  



Typically, programming languages separate types into two kinds: primitive types, i.e. types which cannot be decomposed, and composite or structured types. Thus, a typical general-purpose programming language will provide type constructors for well-understood mathematical constructs including cartesian products, disjoint unions, mappings, powersets and recursive types, for example, the programming language Pascal supports record, variant record, array, set and pointer types, together with ‘special purpose’ types, e.g. a file type.



We will examine, next, the notion of abstraction because it is inherently a basis for the notion of one particular kind of abstraction which is of concern to programming language designers, i.e. data abstraction. 



Abstraction and Data Abstraction



Programming languages provide control abstractions, e.g. skips, assignments, procedure calls, sequential commands, collateral commands, conditional commands, iterative commands and block commands, and data abstractions., e.g. modules, objects and classes.



A module  construct is a feature of many imperative languages which seek to provide support for the systematic development or “engineering” of large-scale modular software systems as compositions of named, separately compilable components. A module in such languages encapsulates its components (constants, types, variables, procedures and functions) enabling a (syntactic) decomposition of a procedure hierarchy into sets of related components with a well-defined (module) interface.  



Two limitations of a module construct in such languages can be identified:-




∆ 	The inability of such a construct to provide a means of ensuring that the decomposition 	satisfies certain formal criteria, for example, the operations defined in the interface are 

	sufficient to define a type 



∆	The need to support a concrete realisation of a type such that instances of the type are created 	in a suitably initialised "state" and with "protection" for this encapsulated "state"      



Types and Abstract Types



The notion of type as a set of values is suitable for most purposes, however, problems can arise when a “new” type is to be defined in terms of existing types since we must choose a representation for values of the new type. In some cases, the representation type may have values that do not correspond to any values of the desired type, or the representation type may have several values that correspond to the same value of the desired type. Consider, for example, the definition of the type  speed (written in a language with a Pascal-like syntax) shown below:-



TYPE speed = RECORD

               distance: integer;

               time    : integer

             END; 



This definition might usefully embody some constraint, for example, one which excludes those values of distance and time which have a common factor. We might represent such a constraint as:-



{speed(m, n) | m, n Œ integer AND n > 0 AND m, n have no common factor}   



In the example above a representation type for speed was defined directly in terms of a type, i.e. a set of values. Consider, next, how a type can be described indirectly by a group of operations rather than directly as set of values, i.e. as an abstract type. The definition of a “new” type as an abstract type enables undesirable properties of a representation type to be excluded. Given the realisation of the abstract type speed shown below, a “user” of this type can generate values of the type by evaluating expressions involving the constants zero and one and the functions cons_speed and add_speed, and two values of the type speed can be compared by a call to the function speed_eq. The implementation of the function cons_speed is used to constrain the value of its second argument (time) to be non-zero:-




�
MODULE speed_def;

  INTERFACE

    TYPE speed = HIDDEN;

    FUNCTION zero: speed;

    FUNCTION one : speed;

    FUNCTION cons_speed(m: integer; n: integer): speed;

    FUNCTION add_speed (r: speed; s: speed    ): speed;

    FUNCTION speed_eq  (r: speed; s: speed    ): Boolean;

  IMPLEMENTATION

    TYPE speed = RECORD

                   distance: integer;

                   time    : integer

                 END;

    FUNCTION zero: speed;

    BEGIN

      .

      .

    END;



    FUNCTION one: speed;

    BEGIN

      .

      .

    END;

    .   

    .


    FUNCTION cons_speed(m: integer; n: integer): speed;

        VAR  r: speed;

    BEGIN

      IF n <> 0 THEN

        WITH r^ DO

        BEGIN distance:=m; time:=n END

      ELSE ...{not a speed}

    END;

    .

    .  

END.    



It is important to note that the module construct used above to realise the type speed provides a means of specifying types and not type constructors�. If we wish, for example, to support a type whose elements may be of different types a separate module must be provided for each. Where a whole class of similar objects is to be created a “generic module” is needed, i.e. a module construct which permits an object class to be defined such that it captures a whole class of behaviourally related types. 



In the example below, a language whose syntax “resembles” the syntax of a modular Pascal-like language is used to describe the class stack�:-





CLASS_MODULE stack(item_type            : TYPE;

                   CONST max_cardinality: natural

                  );

  INTERFACE 

    PROCEDURE empty;

    FUNCTION  is_empty(s: stack): Boolean;

    PROCEDURE push(item: item_type);

    FUNCTION  top: item_type;

    PROCEDURE pop;

  IMPLEMENTATION

    .

    .

END.





Given the above definition of a stack an implicit subtyping relation� enables a stack “user” to assign the value of a "subtype" where an instance of the "supertype" is expected. i.e. s1:=s2 is “type safe” in the example below, but s2:=s1 is not. 




PROGRAM stack_user;

    .

    USES stack;

    TYPE natural = 0..maxint;

    VAR  s1      : stack[integer];

         s2      : stack[natural];

         n       : natural; 



    PROCEDURE local_typed_procedure;

       VAR s: stack[boolean];

    BEGIN

      s:=s.push(true, s.empty_stack);

      .

      .

    END;        



BEGIN

  s1:=s1.push(3);

  n:=3;

  s2:=s2.push(n); 

  .

  .

  s1:=s2

END.



Although the concepts of abstract type and object class are subtly different� both enable the creation of values of a type whose representation is hidden and whose state can be changed only by operations with exclusive access. 



Abstract Types and Abstract Data Types



Thus far, a type has been characterised in terms of a set of values and also as an abstract type realised by a module whose interface component defines the signature of the operations over the type and whose implementation component "hides" the definition of a representation type for the abstract type. 



Where a type is defined solely in terms of operations over the type and not in terms of a representation type then it is termed an abstract data type. Such a type can be defined using a module construct whose implementation component is "replaced" by a specification component, for example, the type stack shown below:-



MODULE stack_adt;

  INTERFACE 

    USES item_type;

    TYPE stack;

    FUNCTION  empty: stack;

    FUNCTION  is_empty(s: stack                 ): Boolean;

    FUNCTION  push    (s: stack; item: item_type): stack;

    FUNCTION  top     (s: stack                 ): item_type;

    FUNCTION  pop     (s: stack                 ): stack;

  SPECIFICATION

    VAR i: item_type;

        s: stack;

    EQUATIONS

      is_empty(empty_stack) = true;

      is_empty(push(s, i))  = false;

      pop(push(s, i))       = s;

      top(push(s, i))       = i;

END.

 

This style of description, termed an algebraic specification, has the advantage that it is possible to generate an executable representation "automatically".





Conclusions



This lecture has considered, first, how a type can be considered solely in the context of a means of collecting together a set of values, secondly how it can be realised as an abstract type using a module construct, and thirdly as an abstract data type by specifying the meaning (semantics) of the operations over the type algebraically.



It has been shown how a module construct  enables types to be defined but not type constructors and how, if a "class" of related types is to be defined, support for parameterisation must be provided by the module construct. 



The next lecture will examine how a module construct supports a variety of different "styles" of description. One particular style of description identified in this lecture, i.e. a module which is parameterised by a type, is then shown to be the basis for object oriented programming when this style of description is combined with the notion of inheritance.   





Chris Harrison, January 1996. 







� A not unreasonable assumption since such languages have been used as a means of teaching introductory programming for many years and for good reasons.






� The object oriented paradigm has its conceptual basis in record structures (called objects) intended to be named collections of values (attributes) and functions (methods). Collections of objects form classes and a subclass relation defined on classes enables methods to work "appropriately" on all members belonging to the subclass of a given class. The first object oriented language was arguably Simula67. Many more recent languages are typed using simple extensions of the type rules for Pascal-like languages. These extensions involve principally a notion of subtyping and also more powerful type systems that elegantly incorporate parametric polymorphism.



� As stated in lecture -1, The functional and declarative paradigms seek to overcome a problem which is at the heart of Software Engineering, i.e.



"As the size of a piece of software increases the number of potential interactions between components increases exponentially until they cannot be understood, maintained or documented effectively. This effect dominates both the cost of software and also limits its applications."



Functional languages seek to overcome the problem of "doing away" with assignment (the basis of the imperative paradigm where commands update variables which may be shared) by requiring programs to be stepwise refined into hierarchies of function definitions which are ultimately used to define the expression which represents the result of the program, e.g. an integer, a file of records or a value representing an image to be displayed. Declarative languages also avoid explicit updating of variables albeit using a different technique - see Communications of ACM Vol. 28, No 12, December 1985 "Describing Prolog by its Interpretation and Compilation". Unfortunately even these "radical" attempts at changing the way the majority of programs are written have not been particularly successful in reducing the complexity of large scale software systems.



An approach which has been more successful and which is applicable to a variety of different programming language styles is to provide direct support for defining sets of constants, types, procedures and variables with well defined interfaces, i.e. modules.   



� The use of the reserved word HIDDEN in the interface component of the type speed enables users of the module to declare variables of type speed and to define other types which have speeds as components, without being able to access the implementation structure of speeds. 



� The type stack is parameterised by a TYPE (and also by an attribute CONST max_cardinality: natural), and the “methods”, i.e. type generators and observer functions, push, is_empty, top and pop apply implicitly to an instance of the type (denoted by self).



� It is assumed that the type natural is a subrange of the discrete primitive type integer, i.e. that a subtype can be defined as a subrange. 



� Consider, for example, how a module does not “create” any variable of the abstract type it defines, instead, it binds an abstract type definition to an encapsulated set of bindings such that the abstract type may be used to declare several distinct variables. Conversely, an object class supports several objects each of which defines several distinct methods which accesses a distinct object.
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