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Introduction

'It is not our business,' he said, 'to help students to think for themselves. Surely this is the very last thing which one who wishes them well should encourage them to do. Our duty is to ensure that they shall think as we do, or at any rate, as we hold it expedient to say we do.'

The Colleges of Unreason, Chapter 22 of Erewhon by Samuel Butler.



Lecture 1 examined how a type can be described solely in terms of operations over the type, i.e. as an abstract data type. This lecture expands our understanding of the module construct used in lecture 1 by describing, first, how modules support a variety of different "styles" of use. 



One particular style of use introduced in Lecture 1, i.e. modules which are parameterised by types, is shown to be the basis for object oriented programming when this style of description is combined with the notion of inheritance.   



Styles of Module Use



Three different styles of module use are shown in the examples below. The first example demonstrates how a module can be used to form a "library" of pre-developed components which may be used by other modules or programs on the same basis as pre-defined "language" components, e.g. the type Boolean,  I/O operations, etc.



MODULE example_1;



  INTERFACE



    CONST x_min = 0; x_max = 79; y_min = 0; y_max = 23;



    TYPE  abscissa = x_min..x_max; ordinate = y_min..y_max;



    PROCEDURE clear_screen;



    PROCEDURE print_string(s: string; x: abscissa; y: ordinate);



  IMPLEMENTATION



    USES system_io;



    PROCEDURE clear_screen;

    BEGIN

      (* statements to clear screen *)

    END;



    PROCEDURE print_string(* s: string; x: abscissa; y: ordinate *);

    BEGIN

      (* statements to display string *)

    END; 



END.



Access to the components defined by the module's interface is gained by including a USES declaration in a program which uses the module, e.g.



PROGRAM module_user;

   USES example_1;

BEGIN

  ..........

END.

Notice that the implementation part of this module is itself dependent upon another module called "system_io". A USES declaration placed in the implementation part in this way allows a module to access the facilities provided by "system_io" but hides those facilities from other modules or programs which use the components defined in module "example_1".



The next example demonstrates how a module can be used to encapsulate� the state of an "object"�. Variables declared in the implementation part of a module store information which can only be accessed via calls to procedures and functions defined in the interface. The designer of a module can use this technique to ensure that users only access stored information in the way that he or she intends, i.e. they cannot  "break" the module by gaining direct access to its stored data. 



MODULE memory;



  INTERFACE



    USES words;



    PROCEDURE read_memory(address  : word;

                          VAR value: word

                         );



    PROCEDURE write_memory(address: word;

                           value  : word

                          );



  IMPLEMENTATION



    USES word_operations;



    CONST max_address = 2047;



    TYPE  address     = 0..max_address;



    VAR   store       : ARRAY[address] OF word;



    PROCEDURE read_memory(* address  : word;

                            VAR value: word

                         *);

        VAR   index: integer;

    BEGIN

      index:=word_to_integer(address);

      IF index IN [0..max_address] THEN value:=store[index]

      ELSE value:=integer_to_word(0)

    END;

 

    PROCEDURE write_memory(* address: word;

                             value  : word

                          *);

            VAR   index: integer;

    BEGIN

      index:=word_to_integer(address);

      IF index IN [0..max_address] THEN store[index]:=value

    END;



END.



In this example, both the interface and the implementation depend upon resources provided by other modules. The interface is defined in terms of the type "word" which is provided by the module called "words". The implementation also makes use of "words" and a module called "word_operations" which provides a function word_to_integer for converting words into integers. 

 



In lecture 1, we considered how a module may be used to provide a realisation of an abstract type. 



MODULE stack_definition{
i
tem_type
 
=
 integer};



  INTERFACE

 

    TYPE stack = HIDDEN;

  

    PROCEDURE empty;

    FUNCTION  is_empty(s: stack): Boolean;

    PROCEDURE push(item: item_type);

    FUNCTION  top: item_type;

    PROCEDURE pop;



  IMPLEMENTATION

    CONST max_cardinality = 10;

    TYPE  stack   = ^element;

          element = RECORD

                      this: item_type;

                      next: stack

                    END; 

    .

    .

END.



This particular module, written in a hypothetical language with a Pascal-like syntax�, defines a type stack and is also parameterised 
by a
 type, i.e. item_type 
=
 integer
.






Abstract Data Types and Equational Specification



Recall, also, a third style of module use, i.e. how a module may be used to define a type solely in terms of operations over the type and not in terms of any representation type.
 In the example below, the type stack is defined solely in terms of the operations over the type (empty, push, pop etc) and not in terms of a representation type, e.g. the pointer type used in the example stack definition in the previous section.





MODULE stack_adt;

  INTERFACE 

    USES item_type;

    TYPE stack;

    FUNCTION  empty: stack;

    FUNCTION  is_empty(s: stack                 ): Boolean;

    FUNCTION  push    (s: stack; item: item_type): stack;

    FUNCTION  top     (s: stack                 ): item_type;

    FUNCTION  pop     (s: stack                 ): stack;

  SPECIFICATION

    VAR i: item_type;

        s: stack;

    EQUATIONS

      is_empty(empty_stack) = true;

      is_empty(push(s, i))  = false;

      pop(push(s, i))       = s;

      top(push(s, i))       = i;

END.



The notion of simple algebraic substitution enables this equational specification to be given a meaning. In the description of the stack type above, the  equations indicate that their left-hand-sides are equal to their right-hand-sides and may, therefore, be used as substitution rules, i.e. whenever an expression is encountered which matches the structure of one side of a particular equation, it may be replaced by the expression which occurs on the other side of the same equation�.



Classifications for components in algebraic descriptions can be identified, for example, constructor functions can be shown to be capable of representing any expression defined in terms of other classifications, and hence, it can be shown that constructor functions are not specified by any equations and consequently cannot be simplified regardless of what arguments they are applied to. The notion of refinement can be used to demonstrate how, when designing a new ADT, correctness and completeness are fundamental considerations:-



∆ 	An ADT’s constructor functions are defined first to represent the different kinds of 	value 	which are included in the type, e.g. stacks are either empty stacks with no attributes, or 	push stacks with two attributes, a top of some type, and a rest of type stack



∆ 	How each function in a specification may be associated with zero or more equations, each 	of which defines an individual case to which the function applies. Thus, functions may 	be partial , i.e. they do not apply to all possible values of the type.



∆ 	How the result of applying a function to arguments which do not match any 	specified in its equations, e.g. pop(empty_stack) cannot be simplified since it is 	undefined. Such a function application can only be evaluated to itself, a property 	which is consistent with the definition of constructor functions earlier, i.e. they are 	not 	specified by any equations and cannot be simplified regardless of the arguments they are 	applied to.




This style of module use can also support the notion of parametric polymorphism. In the example shown below, the type 
stack
 is 
again 
parameterised
 by 
item_type
.





 
MODULE stack_adt
(item_type 
=
 integer)
;

  INTERFACE 

 
   
TYPE stack;

    FUNCTION  empty: stack;

    FUNCTION  is_empty(s: stack                 ): Boolean;

    FUNCTION  push    (s: stack; item: item_type): stack;

    FUNCTION  top     (s: stack                 ): item_type;

    FUNCTION  pop     (s: stack                 ): stack;

  SPECIFICATION

    VAR i: item_type;

        s: stack;

    EQUATIONS

      is_empty(empty_stack) = true;

      is_empty(push(s, i))  = false;

      pop(push(s, i))       = s;

      top(push(s, i))       = i;

END.





In two of the 
descriptions of stack types
 above
 the 
expression
:-




item_type 
=
 integer





has enabled the definition to
 exploit the notion of a type as a parameter.
 In practice, 
such expressions should permit 
more than one
 possible type to be supplied as an actual parameter
. 





Thus for example, the expression:-




item_type ≤ integer
 






denote
s
 a 
formal parameter
 which must be 
“at least
” an integer, i
.e. an actual parameter
 would have to be the type integer or any 
sub-type
 of the type integer.
 





In permitting such expressions we are 
exploiting
 
a
 relation
ship 
which such expressions 
implicity
 denote, 
i.e. 
a relationship 
between a type (defined as a class) and it
’s sub-types (defined as s
ub-classes) 
which 
is 
usually term
ed
 
inclusion pol
ymorphism
 
or 
inheritance
.





Inheritance



Object orientation 
exploits
 the notion of inclusion polymorphism or inheritance as a means of organising descriptions
 
independently
 of any 
considerations of a module construct and how such a construc
t might support the notion of parametric polymorphism.





Using inheritance a "new" class can be developed from an existing class� such that:-



∆ 	the subclass shares the behaviour of the superclass 



∆ 	the subclass may add further "data" and "operations" to those it inherits from its superclass



∆ 	the subclass may modify the behaviour of one or more of the "operations" it inherits from 

	its superclass



In a “model” object_oriented programming language we consider a class to be explicitly a definition of a type. Such types are related to each other in a type graph a general structure for which is shown below:



�

In this diagram, the thick arrows specify that each type is a sub-type of the type(s) to which it points. A subtype is based on its "parent" types (known as supertypes), and includes all of the operations and attributes of its "parent "types. A subtype may also provide additional attributes and operations, and may redefine existing operations of its supertypes. A subtype may not redefine attributes of its parent types. An aribitrary type may inherit information from a number of supertypes, and may in turn be an "ancestor" of a number of subtypes. 



Examples of 
two
 
simple 
types defined in a "model" object-oriented programming language are shown below:
-





1.
 
A type 
my_window
 
which is a 
subtype
 of
 type
 
window
.




TYPE my_window;�  SUPERTYPES window;�END.




2. 
A type
 
document
_window
 
which is a subtype of
 the type
 
window
 
and 
the type document.




TYPE document_window;�  SUPERTYPES window, document;�END.




Consider
, finally, a
nother
 type
 
document
_window2
, 
which is a
 type defined in terms of
 
it
’s
 inheriting from the types 
window
 
and 
document
 
and also 
in terms of 
two
 
parameters
, i.e. 
a 
value
 
(
paper width
)
 
of type 
integer
 
and also 
a
 
type
 
 
checker
 which must be 
“at least
” 
a
 
spell_checker
:
-




TYPE document_window2
(
paper_width: integer)
{checker <= spell_checker}
;��  SUPERTYPES window, document;��  VAR my_checker: checker;��“ methods are defined here”��END.





Note how this example 
combines
 
parametric
 and 
inclusion
 polymorphism
. We will consider further examples of types defined in this "model" language in later lectures and show how, from both object oriented designs and also object oriented specifications, such descriptions can be systematically derived. 



Conclusions



This lecture has examined, first, how modules support a variety of different "kinds" of description, in particular how modules can be used to provide "libraries" of pre-developed components, how modules can be used to encapsulate the state of an object. and hence provide realisations of abstract data types, and how abstract data types may be defined algebraically. 



One particular style of of description introduced in Lecture 1, i.e. modules which are parameterised by types has been shown to be the basis for object oriented programming when this style of description is combined with the notion of inheritance.   



Chris Harrison, January 1996. 







� A module may abstract over a single declaration, however, a module usually abstracts over a set of related declarations inlcuding types, constants, variables, procedures and functions, etc. It is in this context that a module encapsulates the components declared within it.



� The term "object" is used in its most general sense here !



� Several "liberties" have been taken in this example to keep its representation simple. These include the notion of "type expressions" as formal parameters in a module construct, an "extended" semantics for USES declarations, etc. In general, if an abstraction, e.g. a module abstraction, is parameterised with respect to a value it can use the argument value even if nothing is known about the value except its type. Similarly, if an abstraction is parameterised with respect to a variable it can inspect and update the argument variable even if nothing is known about the variable except its type. However, type parameters are fundamenatlly different because they denote an 
possibly 
unknown
 argument type, i.e. 
nothing useful (e.g. type checking) can be done with the type parameter until something is known about the argument type, more specifically, what operations are applicable to values of the argument type. 



� Such specifications may themselves adopt a variety of different "styles". See the later lecture on object oriented specification.



� Different languages use different terms for these notions, see for example, heir and descendent (Meyer in "Object-Oriented Software Construction"), base class and derived classes (any text on C++), etc. Irrespective of the terms used we are either then to denote inheritance as extension or as specialisation. Inheritance viewed as specialisation corresponds to the notion of types and of subtypes (more properly sets and subsets), i.e. a rectangle is a more specialised notion than a polygon and objects of type rectangle form a subset of the objects that may be accociated with objects of type polygon. Alternatively, whan a class is viewed in the context of a "provider of services" a rectangle implements the servicves (featuers) of a polygon together with its own and in this context the "subset relationship" is inverted, i.e. the features applicable to polygon objects are a subset of those applicable rectangle objects !











	Page � of 6












